首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Agent-based integrated assessment modelling: the example of climate change   总被引:1,自引:0,他引:1  
Current approaches to deal with the socio-economic implications of climate change rely heavily on economic models that compare costs and benefits of different measures. We show that the theoretical foundations underpinning current approaches to economic modelling of climate change are inappropriate for the type of questions that are being asked. We argue therefore that another tradition of modelling, social simulation, is more appropriate in dealing with the complex environmental problems we face today.  相似文献   

2.
Cohen et al. [16] suggest that in order to explore ways to bring climate change (CC) and sustainable development (SD) research together, it is necessary to develop more heuristic tools that can involve resource users and other stakeholders. In this respect, this paper focuses on methodological development in research to study climate change impacts and regional sustainable development (RSD). It starts with an introduction of an integrated land assessment framework (ILAF) which is part of the integrated phase of the Mackenzie Basin Impact Study (MBIS) in Canada. The paper then provides some articulation on how the integrated approach was applied in the Mackenzie Basin to show implications of climate change for RSD.  相似文献   

3.
This communication summarizes the main findings of INASUD, an European-wide research project on integrated assessment of climate policies. The project aimed at improving the framing of climate policy analysis through the parallel use of various existing integrated assessment models. It provides a comprehensive examination of the link between uncertainty regarding damages and inertia in economic systems. Results show that the Kyoto targets and timing are consistent with the precautionary principle but offers little insurance for longer-term climate protection. Flexibility mechanisms offer potentials for cooperation with developing countries, and are necessary to tap the environmental and economic benefits of joint carbon and sulfur emissions abatement.  相似文献   

4.
Within the CLEAR project a new approach to integrated assessment modelling has been developed for the participatory integrated assessment of regional climate change involving citizens' focus groups. The climate change decision problem was structured by focusing separately on climate impacts and mitigation options. The attempt was made to link the different scales of the problem from the individual to the global level. The abstract topic of climate change was related to options on the level of a citizen's individual lifestyle. The option of a low energy society was emphasised in order to embed the climate change decision problem in a wider range of societal concerns. Special emphasis was given to the characterisation and communication of uncertainties. The chosen approach allows different kinds of uncertainties in one framework to be addressed. The paper concludes with a summary of the experience made, and recommendations for the use of models in participatory integrated assessments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The Tolerable Windows Approach (TWA) to Integrated Assessments (IA) of global warming is based on external normative specifications of tolerable sets of climate impacts as well as proposed emission quotas and policy instruments for implementation. In a subsequent step, the complete set of admissible climate protection strategies which are compatible with these normative inputs is determined by scientific analysis. In doing so, minimum requirements concerning global and national greenhouse gas emission paths can be determined. In this paper we present the basic methodological elements of TWA, discuss its relation to more conventional approaches to IA like cost–benefit analyses, and present some preliminary results obtained by a reduced-form climate model.  相似文献   

6.
This article takes its point of departure in two approaches to integrating climate change into Strategic Environmental Assessment (SEA): Mitigation and adaptation, and in the fact that these, as well as the synergies between them and other policy areas, are needed as part of an integrated assessment and policy response. First, the article makes a review of how positive and negative synergies between a) climate change mitigation and adaptation and b) climate change and other environmental concerns are integrated into Danish SEA practice. Then, the article discusses the implications of not addressing synergies. Finally, the article explores institutional explanations as to why synergies are not addressed in SEA practice. A document analysis of 149 Danish SEA reports shows that only one report comprises the assessment of synergies between mitigation and adaptation, whilst 9,4% of the reports assess the synergies between climate change and other environmental concerns. The consequences of separation are both the risk of trade-offs and missed opportunities for enhancing positive synergies. In order to propose explanations for the lacking integration, the institutional background is analysed and discussed, mainly based on Scott's theory of institutions. The institutional analysis highlights a regulatory element, since the assessment of climate change synergies is underpinned by legislation, but not by guidance. This means that great focus is on normative elements such as the local interpretation of legislation and of climate change mitigation and adaptation. The analysis also focuses on how the fragmentation of the organisation in which climate change and SEA are embedded has bearings on both normative and cultural-cognitive elements. This makes the assessment of synergies challenging. The evidence gathered and presented in the article points to a need for developing the SEA process and methodology in Denmark with the aim to include climate change in the assessments in a more systematic and integrated manner.  相似文献   

7.
Hydrological processes and crop growth were simulated for the state of Brandenburg (Germany) using the hydrological/vegetation/water quality model SWIM, which can be applied for mesoscale river basins or regions. Hydrological validation was carried out for three mesoscale river basins in the area. The crop growth module was validated regionally for winter wheat, winter barley and maize. After that the analysis of climate change impacts on hydrology and crop growth was performed, using a transient 1.5 K scenario of climate change for Brandenburg and restricting the crop spectrum to the three above mentioned crops. According to the scenario, precipitation is expected to increase. The impact study was done comparing simulation results for two scenario periods 2022–2030 and 2042–2050 with those for a reference period 1981–1992. The atmospheric CO2 concentrations for the reference period and two scenario periods were set to 346, 406 and 436 ppm, respectively. Two different methods – an empirical one and a semi-mechanistic one – were used for adjustment of net photosynthesis to altered CO2. With warming, the model simulates an increase of evapotranspiration (+9.5%, +15.4%) and runoff (+7.0%, +17.2%). The crop yield was only slightly altered under the climate change only scenario (no CO2 fertilization effect) for barley and maize, and it was reduced for wheat (–6.2%, –10.3%). The impact of higher atmospheric CO2 compensated for climate-related wheat yield losses, and resulted in an increased yield both for barley and maize compared to the reference scenario. The simulated combined effect of climate change and elevated CO2 on crop yield was about 7% higher for the C3 crops when the CO2 and temperature interaction was ignored. The assumption that stomatal control of transpiration is taking place at the regional scale led to further increase in crop yield, which was larger for maize than for wheat and barley. The regional water balance was practically not affected by the partial stimulation of net photosynthesis due to higher CO2, while the introduction of stomatal control of regional transpiration reduced evapotranspiration and enlarged notably runoff and ground water recharge.  相似文献   

8.
Starting from the basic assumption of the syndrome concept that essentially all of the present problematic civilization–nature interactions on the global scale can be subdivided into a limited number of typical patterns, the analysis of the response of these patterns (syndromes) to climate change can make a major contribution to climate impact research, surmounting the difficulties of more common sectoral ceteris paribus impact studies with respect to their systemic integration. In this paper we investigate in particular the influence of climate on the regional proneness or disposition towards one of the most important syndromes with respect to famines and malnutrition, the Sahel Syndrome. It describes the closely interlinked natural and socioeconomic aspects of rural poverty driven degradation of soil and vegetation on marginal sites. Two strategies of global climate impact assessment on a spatial 0.5°×0.5° grid were pursued: (a) As a measure for the climate sensitivity of the regional proneness, the absolute value of the gradient of the disposition with respect to the global field of 3} 12 monthy normals of temperature, irradiation and precipitation is calculated. (b) The disposition was evaluated for two different climate forecasts under doubled atmospheric CO2 concentration. For both strategies two new quantitative global models were incorporated in a fuzzy-logic-based algorithm for determining the disposition towards the Sahel Syndrome: a neural-net-based model for plant productivity and a waterbalance model which calculates surface runoff considering vertical and lateral fluxes, both driven by the set of 36 monthly climatological normals and designed to allow very fast global numerical evaluation.Calculation (b) shows that the change in disposition towards the Sahel Syndrome crucially depends on the chosen climate forecast, indicating that the disagreement of climate forecasts is propagated to the impact assessment of the investigated socio-economic pattern. On the other hand the regions with a significant increase in disposition in at least one of the climate scenario-based model runs form a subset of the regions which are indicated by the local climate sensitivity study (a) as highly sensitive – illustrating that the gradient measure applied here provides a resonable way to calculate an upper limit or worst case of negative climate impact. This method is particularly valuable in the case of uncertain climate predictions as, e.g., for the change in precipitation patterns.  相似文献   

9.
The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The analysis of climate change is confronted with large uncertainties that need to be taken into account to arrive at meaningful policy recommendations. The main contribution of economics to this interdisciplinary task is to provide formal frameworks and techniques for analyzing climate policy in the context of uncertainty. This paper will give an overview of existing approaches and findings to provide a broad picture of what economics can contribute to the debate.  相似文献   

11.
Climate changes exert negative impacts on the global environments and the human beings. They imply more frequent extreme weather events, which are responsible of sea level rise, coastal erosion, flooding, droughts, and desertification. Mitigation and adaptation represent intertwined strategies for counteracting climate changes. Mitigation is associated to the lessening of the causes of climate changes and includes actions reducing greenhouse gas emissions. Adaptation is a proactive concept addressing how humans can adapt and benefit from climate change. The mainstreaming and integration of adaptation to climate change into routine practice can be favored by Strategic Environmental Assessment (SEA) of regional policies, plans and programmes. In this study, we aim at scrutinizing a set of SEA reports of regional plans and programmes adopted in Sardinia (Italy), to investigate if -and to what extent- adaptation to climate change has characterized planning and programming tools. Evidence shows that the integration of adaptation-driven issues into regional planning is still in its infancy but presents the signs of promising expansion.  相似文献   

12.
Climatic change will result in great changes in vegetation. In this paper, a biogeographical model, the BIOME1, was used to predict potential vegetation distribution in China under climate change. Firstly, the BIOME1 was validated according to the climate–vegetation relationships in China. Kappa statistics showed that the validated BIOME1 was able to capture the geographical patterns of vegetation more accurately. Then, the validated BIOME1 was used to predict the distribution of vegetation of China under two climatic scenarios produced by a Regional Circulation Model, RegCM2/CN. The simulation results showed obvious northward shifts of the boreal, temperate deciduous and evergreen and tropical forests, a large expansion of tropical dry forest/savanna and reduction of tundra on the Tibetan Plateau. Three vulnerable regions sensitive to climate changes are pointed out, i.e., Northern China, the Tibetan Plateau and Southwestern China (mainly Hengduan Mountains in Yunnan Province and west of Sichuan Province). In recent decades, China has experienced dramatic industrialization and population growth, which exert strong pressure on the environment of China. The consequences of climate changes warrant more attention for maintaining a sustainable environment for China.  相似文献   

13.
In this paper, we present a general method, based on a convex optimisation technique, that facilitates the coupling of climate and economic models in a cost-benefit framework. As a demonstration of the method, we couple an economic growth model à la Ramsey adapted from DICE-99 with an efficient intermediate complexity climate model, C-GOLDSTEIN, which has highly simplified physics, but fully 3-D ocean dynamics. As in DICE-99, we assume that an economic cost is associated with global temperature change: this change is obtained from the climate model, which is driven by the GHG concentrations computed from the economic growth path. The work extends a previous paper in which these models were coupled in cost-effectiveness mode. Here we consider the more intricate cost-benefit coupling in which the climate impact is not fixed a priori. We implement the coupled model using an oracle-based optimisation technique. Each model is contained in an oracle, which supplies model output and information on its sensitivity to a master program. The algorithm Proximal-ACCPM guarantees the convergence of the procedure under sufficient convexity assumptions. Our results demonstrate the possibility of a consistent, cost-benefit, climate-damage optimisation analysis with a 3-D climate model.  相似文献   

14.
This paper demonstrates the ability of Polish agriculture to adapt to predicted climate change according to GISS and GFDL scenarios. Both climate-change scenarios will significantly affect farming conditions in Poland through water deficit, shifts in planting and harvesting seasons, changes in crop yields and crop structure. Neither scenario seems to endanger the self-sufficiency of Poland as long as preventative measures are taken. Moreover, the realization of GISS creates the possibility of a surplus in production. It must be emphasized that regardless of the scenario, the adaptation of agriculture to an expected climate change cannot be handled by the farming community itself.  相似文献   

15.
Stream discharge of a watershed is affected and altered by climate and landcover changes. These effects vary depending on the magnitude and interaction of the changes, and need to be understood so that local water resource availability can be evaluated and socioeconomic development within a watershed be pursued and managed in a way sustainable with the local water resources. In this study, the landcover and climate change effects on stream discharge from the Jacks Fork River basin in the Ozark Highlands of the south-central United States were examined in three phases: site observation and data collection, model calibration and simulation, and model experiment and analysis. Major results of the study show that climate fluctuations between wet and dry extremes resulted in the same change of the basin discharge regardless of the landcover condition in the basin. On the other hand, under a specified climate condition landcover change from a grassland basin to a fully forested basin only resulted in about one half of the discharge change caused by the climate variation. Furthermore, when landcover change occurred simultaneously with climate variation, the basin discharge change amplified significantly and became larger than the combined discharge changes caused by the climate and landcover change alone, a result indicating a synergistic effect of landcover and climate change on basin discharge variability. Agricultural Research Division, University of Nebraska-Lincoln, Contribution Number 13437.Qi Hu: Corresponding author: Dr. Qi Hu, Climate and Bio-Atmospheric Sciences Group, School of Natural Resource Sciences, 237 L.W. Chase Hall, University of Nebraska-Lincoln, Lincoln, NE 68583-0728, USA. E-mail: qhu2@unl.edu.  相似文献   

16.
The purpose of this study was to predict quantitative changes in evaporation from bare soils in the Mediterranean climate region of Turkey in response to the projections of a regional climate model developed in Japan (hereafter RCM). Daily RCM data for the estimation of reference evapotranspiration (ET r) and soil evaporation were obtained for the periods of 1994–2003 and 2070–2079. Potential evaporation (E p) from bare soils was calculated using the Penman–Monteith equation with a surface resistance of zero. Simulation of actual soil evaporation (E a) was carried out using Aydin model (Aydin et al., Ecological Modelling 182:91–105, 2005) combined with Aydin and Uygur (2006, A model for estimating soil water potential of bare fields. In Proceedings of the 18th International Soil Meeting (ISM) on Soils Sustaining Life on Earth, Managing Soil and Technology, Sanliurfa, 477–480pp.) model of predicting soil water potential at the top surface layer of a bare soil, after performances of Aydin model (R 2 = 94.0%) and Aydin and Uygur model (R 2 = 97.6) were tested. The latter model is based on the relations among potential soil evaporation, hydraulic diffusivity, and soil wetness, with some simplified assumptions. Input parameters of the model are simple and easily obtainable such as climatic parameters used to compute the potential soil evaporation, average diffusivity for the drying soil, and volumetric water content at field capacity. The combination of Aydin and Aydin and Uygur models appeared to be useful in estimating water potential of soils and E a from bare soils, with only a few parameters. Unlike ET r and E p projected to increase by 92 and 69 mm (equivalent to 8.0 and 7.3% increases) due to the elevated evaporative demand of the atmosphere, respectively, E a from bare soils is projected to reduce by 50 mm (equivalent to a 16.5% decrease) in response to a decrease in rainfall by 46% in the Mediterranean region of Turkey by the 2070s predicted by RCM, and consequently, to decreased soil wetness in the future.  相似文献   

17.
本文报道了吉林省东南部山地主要江河上游毛翅目幼虫的分布状况,计12科19属31种。并结合水质理化监测数据,对浑江六个断面的水质进行综合评价,探讨毛翅目幼虫对水质的指示作用,确定旋刺纹石蚕为弱──强中污带水体的指示生物。  相似文献   

18.
Accelerated soil erosion is an aspect of dryland degradation that is affected by repeated intense drought events and land management activities such as commercial livestock grazing. A soil stability index (SSI) that detects the erosion status and susceptibility of a landscape at the pixel level, i.e., stable, erosional, or depositional pixels, was derived from the spectral properties of an archived time series (from 1972 to 1997) of Landsat satellite data of a commercial ranch in northeastern Utah. The SSI was retrospectively validated with contemporary field measures of soil organic matter and erosion status that was surveyed by US federal land management agencies. Catastrophe theory provided the conceptual framework for retrospective assessment of the impact of commercial grazing and soil water availability on the SSI. The overall SSI trend was from an eroding landscape in the early drier 1970s towards stable conditions in the wetter mid-1980s and late 1990s. The landscape catastrophically shifted towards an extreme eroding state that was coincident with the “The Great North American Drought of 1988”. Periods of landscape stability and trajectories toward stability were coincident with extremely wet El Niño events. Commercial grazing had less correlation with soil stability than drought conditions. However, the landscape became more susceptible to erosion events under multiple droughts and grazing. Land managers now have nearly a year warning of El Niño and La Niña events and can adjust their management decisions according to predicted landscape erosion conditions.  相似文献   

19.
A methodology for regional application of forest simulation models has been developed as part of an assessment of possible climate change impacts in the Federal state of Brandenburg (Germany). Here we report on the application of a forest gap model to analyse the impacts of climate change on species composition and productivity of natural and managed forests in Brandenburg using a statistical method for the development of climate scenarios. The forest model was linked to a GIS that includes soil and groundwater table maps, as well as gridded climate data with a resolution of 10 × 10 km and simulated a steady-state species composition which was classified into forest types based on the biomass distribution between species. Different climate scenarios were used to assess the sensitivity of species composition to climate change. The simulated forest distribution patterns for current climate were compared with a map of Potential Natural Vegetation (PNV) of Brandenburg.In order to analyse the possible consequences of climate change on forest management, we used forest inventory data to initialize the model with representative forest stands. Simulation experiments with two different management strategies indicated how forest management could respond to the projected impacts of climate change. The combination of regional analysis of natural forest dynamics under climate change with simulation experiments for managed forests outlines possible trends for the forest resources. The implications of the results are discussed, emphasizing the regional differences in environmental risks and the adaptation potentials of forestry in Brandenburg.  相似文献   

20.
Decision–support systems in the field of integrated water management could benefit considerably from social science knowledge, as many environmental changes are human-induced. Unfortunately the adequate incorporation of qualitative social science concepts in a quantitative modeling framework is not straightforward. The applicability of fuzzy set theory and fuzzy cognitive maps for the integration of qualitative scenarios in a decision–support system was examined for the urbanization of the coastal city of Ujung Pandang, Indonesia. The results indicate that both techniques are useful tools for the design of integrated models based on a combination of concepts from the natural and social sciences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号