首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   

2.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

3.
Historical records preserved in sediments show that the lakes are extremely sensitive to metal emissions from the smelters in the Sudbury basin. From the observed quick response, a strong capacity for rapid recovery (deacidification) of acid-stressed lakes in the area is deduced. The study thus emphasises the need for curtailing the emissions of acidic and acidifying substances as a critical step in reducing lake acidification as well as in rehabilitating many of the afflicted lakes.  相似文献   

4.
5.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 µg/L to 191 µg/L with a mean concentration of 33 µg/L. Groundwater is mainly Ca–HCO3 type with high concentrations of dissolved As, Fe, and Mn, but low level of SO4. The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 µg/L. Deeper aquifer (> 100 m depth) has a mean arsenic concentration of 18 µg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   

6.
The concentrations of nickel, copper, iron, chromium, lead, cadmium, manganese and zinc have been studied in a small river in South Wales. The river drains the contaminated industrial wasteland of the Lower Swansea Valley which is currently undergoing redevelopment and landscaping activity. The high trace metal levels found in the river waters result from weathering and erosion of this waste material, as well as from two industrial point sources of nickel, and iron and chromium. Hydrological factors found to be of importance in determining current spatial and temporal patterns of contamination included: (1) the river's available dilution at any one time, (2) antecedent river flow conditions, (3) river water pH and (4) the prevailing runoff processes in operation at any one time. The metals are present mostly in their dissolved state (i.e. > 70%), with the exception of iron and chromium which are present mostly as particulates (i.e > 80%).  相似文献   

7.
Using ICP emission spectrometry, the temporal variation of the concentration of dissolved Al, Fe. Si, Mn, Zn. Cu and B in rain-water during an event was observed at Tsukuba, Japan. The relationships between trace element variations and rainfall characteristics were compared with those for major elements such as Na, K, Ca and Mg. In many cases, the concentration of minor elements was highest in the initial stage. The exception was in rain with very short duration or very strong intensity at the initial stage of rainfall.No significant relationship was observed between rainfall intensity and soluble elemental concentration, although in a few cases AI, Zn, Na and Fe showed an inverse correlation with rainfall intensity. It was found that the concentration of minor elements such as Fe, Al and Zn fluctuated, whereas those of Na and other major elements changed smoothly. This difference is considered to be caused by differences in the scavenging process of the elements as well as the heterogeneous and varying distribution of atmospheric particles which supply minor elements in rain-water.  相似文献   

8.
Ikem A  Adisa S 《Chemosphere》2011,82(2):259-267
Multivariate statistical methods (hierarchical clustering analysis: HCA, and principal component analysis: PCA) were used to study the influence of runoff and other diffuse pollution sources on lake water chemistry of Hough Park lake in Central Missouri. In addition, heavy metal concentrations in lake littoral sediment were evaluated for enrichment and probable ecological risk. The abundance of macronutrients in the lake water column followed the order: Ca > Mg > TIC > K > Na > S > NO3 - N > Fe > NH3 - N > TP. Heavy metal concentrations in the lake water column were below acute and chronic level ecological guidelines. TN:TP ratios (range: 4.1-6.8) revealed nitrogen limitation of algal and other photosynthetic plant growth. The HCA showed two major clusters of similarity between the sampling points suggesting different pollution levels for the clusters. PCA 1, 2 and 3 reflected the influence of natural biochemical processes, atmospheric deposition and runoff respectively on lake water chemistry. The abundance of heavy metals and the normalizing element (Li) in littoral sediment (<63 μm fraction) samples analyzed in decreasing order were: Mn > Zn > Cr > Ni > Li > Cu > Pb > Cd > Hg. The average concentration of Cr, Mn and Ni in littoral sediment fraction exceeded the respective lowest effects level (LEL) threshold limit. Metal bioavailability in sediment fraction was low since the most labile metal species contained between 0% and 11% of the total metal content. Using the risk assessment code (RAC) criteria, only Mn posed a medium risk to the lake system.  相似文献   

9.
Spheroidal carbonaceous particles (SCPs) provide an unambiguous indication of atmospherically deposited contamination from industrial sources. SCP data from a 12 year annual sediment trapping and coring programme at 14 lakes based on the UK Acid Waters Monitoring Network, were used to consider temporal trends in deposition and to compare these with measured non-marine sulphate fluxes. Results show good temporal coherence across a broad area of northern UK and that SCP deposition levels and are now at their lowest since the 1940s, in agreement with modelled sulphate data. SCP fluxes show reasonable linearity with measured non-marine sulphate depositional fluxes from the nearest UK Acid Deposition Monitoring Network sites, especially over the post-flue-gas desulphurisation period, but comparisons prior to 1972 are not possible due to lack of data. We speculate on whether palaeolimnological SCP data might be used to reconstruct the history of non-marine sulphate fluxes from industrial sources.  相似文献   

10.
We examined the accumulation of PCBs in ospreys (Pandion haleaetus) that were exposed to local sediment sources. Eggs, chick plasma, and sediment samples were collected over a range of 14 km (0.2-14.2 km) from a PCB source in Sturgeon Lake, ON. Sum PCB concentrations declined in chick plasma (range 422.5-58.3 ng/g) as distance from the PCB source increased, but there was a poor relationship with sum PCBs in eggs. Both tissues indicated an Aroclor 1248/1254 source. Aroclor 1254 comprised an average of 66.9% of sum PCBs in chick plasma from Sturgeon Lake, but comprised only from 27.0 to 44.4% in plasma from other Great Lake colonies. Dietary differences among osprey colonies were not sufficient to explain the PCB patterns observed. There was weak evidence that the ability to metabolize PCBs may differ between juveniles and adults, based upon the PCB profile in eggs and chick plasma.  相似文献   

11.
Surficial sediments, midge larvae (Chironomidae, Diptera) and tubificid worms (Tubificidae, Oligochaeta) were collected at 65 sampling sites located in four different river basins in Flanders (Belgium). Concentrations of the trace metals Cu, Zn, Cd and Pb were measured in organisms and sediments by atomic absorption spectrophotometry. Sediments were subjected to a simultaneous extraction scheme to identify trace metal partitioning among various geochemical phases. Three geochemical characteristics of the sediment were analysed; Total Organic Carbon (TOC), Fe oxides and Mn oxides. Non-linear regression models were constructed to determine the relative importance of the different sediment factors contributing to the variation in metal accumulation by the tubificid worms and chironomids. Generally, the amount of variation that could be explained by these models was limited, with coefficients of determination ranging from 0.05 to 0.66. In most cases, metal levels in organisms were positively related to the easily reducible and reducible metal fractions, and negatively related to the TOC and Fe sediment content. The correlations between metal concentrations in tubificid worms and chrinomid larvae were also rather poor, with coefficients of determinations ranging from 0.01 to 0.52. This indicates that understanding the chemistry of the environment does not suffice to predict the concentrations in organisms. Differences in the structural and functional organisation of the organisms, which among others determine the route of exposure, are at least equally important causes of variability in metal availability and accumulation.  相似文献   

12.
采用DAX-8树脂和732氢型阳离子交换树脂将山口湖沉积物中溶解性有机氮(DON)分成亲水组分和疏水组分,在室内培养条件下,研究了其对羊角月牙藻的可利用性。结果表明:通过DAX-8树脂后,N4和N14沉积物DON回收率分别为98.96%和104.34%。原水和亲水DON组分通过阳离子交换树脂后会吸附类蛋白物质,降低藻类生物量。培养过程中,N4原水和亲水组分DON消耗量分别为0.34 mg·L-1和0.36 mg·L-1,低于N14原水和亲水组分DON消耗量0.94 mg·L-1和0.82 mg·L-1,表明N14亲水组分藻类可利用较N4亲水组分多。由于阳离子交换树脂对N4原水和亲水组中DON去除率较高,其藻类的生物量低于N14原水组和亲水组。N4疏水性组分DON的利用量和藻细胞生物量分别为0.80 mg·L-1和15×104个·mL-1,高于N14组,这是因为N4接收了长水河农场生活污水和周围农田径流中易降解DON。利用PARAFAC模型对培养过程中三维荧光光谱数据解析出1种类蛋白物质和2种类腐殖质物质。培养初期,类蛋白物质先被藻类所利用导致其含量降低,而随着藻类生长进入对数期,释放到水体中类蛋白物质导致其相对荧光强度的增加。在整个培养过程中,类腐殖质物质相对荧光强度的增加主要来源于死亡藻类的释放。  相似文献   

13.
Stormwater treatment ponds receive elevated levels of metals from urban runoff, but the effects of these pollutants on organisms residing in the ponds are unknown. We investigated the accumulation of Cu, Zn, and Pb by macroinvertebrates collected from stormwater treatment ponds in Maryland serving commercial, highway, residential and open-space watersheds, and determined whether watershed land-use classification influences metal concentrations in macroinvertebrates, sediments, and water. Three types of invertebrate samples were analyzed--molluscs, odonates, and composite. Zn concentrations in odonates from ponds draining watersheds with commercial development (mean = 113.82 micrograms g-1) were significantly higher than concentrations in the other land-use categories. Similarly, Cu levels in odonates from commercial ponds (mean = 27.12 micrograms g-1) were significantly higher than from highway (mean = 20.23 micrograms g-1) and open space (mean = 17.79 micrograms g-1) ponds. However, metal concentrations in sediments and water did not differ significantly among land-uses. The results suggest that despite the high variation in ambient metal concentrations within each land-use category, macroinvertebrates in ponds serving commercial watersheds accumulate higher levels of Cu and Zn. The levels of Cu, Zn, and Pb in invertebrates from all ponds were less than dietary concentrations considered toxic to fish.  相似文献   

14.
Regarding impact on ecological soil functioning, metal pollution is often considered a constant factor for certain sampling sites. However, especially bioavailable concentrations may differ in space and time. This aspect was investigated on four sites along a metal-polluted river, differing in soil characteristics and metal concentrations. Every four weeks earthworm densities, soil characteristics, and metal concentrations in soil and earthworms were determined. Earthworm biomass and density fluctuated in time and increased with increasing metal contamination, indicating the presence of compensating factors. Multivariate analysis suggested organic matter and moisture content to be the main factors explaining earthworm biomass. Metal concentrations in the earthworms increased with increasing total or 0.01M CaCl(2) extractable soil concentrations, but no time-related trends were seen. Cadmium concentrations in the earthworms exceeded background values, suggesting a potential risk. The neutral red retention biomarker assay, however, did not show any signs of metal stress in the earthworms.  相似文献   

15.
Degradation of three sulfonamides (SAs), namely sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadimethoxine (SDM) in surface water and sediments collected from Taihu Lake and Dianchi Lake, China was investigated in this study. The surface water (5–10 cm) was collected from the east region of Taihu Lake, China. Two sets of degradation experiments were conducted in 3-L glass bottles containing 2 L of fresh lake water and 100 μg/L of individual SAs aerated by bubbling air at a rate of approximately 1.2 L/min, one of which was sterilized by the addition of NaN3 (0.1 %). Sediment samples were taken from Taihu Lake and Dianchi Lake, China. For the sediment experiment, 5 g of sediment were weighed into a 50-mL glass tube, with 10 mg/kg of individual SAs. Different experimental conditions including the sediment types, sterilization, light exposure, and redox condition were also considered in the experiments. The three SAs degraded in lake water with half-lives (t 1/2) of 10.5–12.9 days, and the half-lives increased significantly to 31.9–49.8 days in the sterilized water. SMZ and SDM were degraded by abiotic processes in Taihu and Dianchi sediments, and the different experimental conditions and sediments characteristics had no significant effect on their declines. SMX, however, was mainly transformed by facultative anaerobes in Taihu and Dianchi sediments under anaerobic conditions, and the degradation rate of SMX in non-sterile sediment (t 1/2 of 9.6–16.7 days) were higher than in sterilized sediment (t 1/2 of 18.7–135.9 days). Under abiotic conditions, degradation of SMX in Dianchi sediment was faster than in Taihu sediment, probably due to the higher organic matter content and inorganic photosensitizers concentrations in Dianchi sediment. High initial SAs concentration inhibited the SAs degradation, which was likely related to the inhibition of microorganism activities by high SAs levels in sediments. Results from this study could provide information on the persistence of commonly used sulfanomides antibiotics in lake environment.  相似文献   

16.
Ca, P, Al, and trace metal (Cu, Ni, Zn, Cd, and Pb) concentrations were measured in several aquatic invertebrate taxa used as food by breeding insectivorous waterfowl, sampled from three sites in eastern Canada with widely varying water chemistry. Ca concentrations were highest in molluscs (snails and clams), averaging 200-300 mg g(-1) (shells included). Aquatic insects of varying sizes, life stages and habits (caddisfly larvae, dragonfly larvae, adult backswimmers, waterstriders, and whirligig beetles) had much lower mean Ca concentrations, ranging from about 0.6 mg g(-1) (beetles) to 1.8 mg g(-1) (caddisflies). Invertebrate-Ca concentrations decreased with increasing body mass for several taxa, with smaller and larger individuals providing similar absolute amounts of Ca. Ca concentrations in most aquatic insects (but not molluscs) were reduced under acidic, low Ca, high Al, low dissolved organic carbon (DOC) and/or low total phosphorus (TP) conditions. In stepwise multiple regressions, pH was consistently the main factor explaining variability in invertebrate-Ca, after controlling for the negative relationship between invertebrate-Ca and body mass for some taxa. Molluscs were absent from lakes below pH 5.3. In general, concentrations of P and metals in invertebrate taxa were not significantly correlated with lake pH. Levels of Al, Cd, or Pb were not sufficiently high to be considered toxic to potential consumers of these organisms. For waterfowl and other birds breeding in acid-stressed habitats and relying on aquatic invertebrates as a source of food, a reduced availability of dietary Ca is more likely than an increased exposure to toxic metals to negatively affect reproductive success, especially when other adverse effects of acidification (lower diversity of prey) are considered.  相似文献   

17.
Little Rock Lake, a small (18 ha), low-alkalinity (25 microeq litre(-1), pH 6.1) seepage lake in northern Wisconsin, was divided into two basins by a flexible, inert barrier and, beginning in spring 1985, the north basin was acidified in three 2-year steps to pH 5.6, 5.1 and 4.7. The annual average pH of the reference basin remained near 6.1. As part of a comprehensive programme to determine the chemical and biological responses to acidification, minor metals (Al, Fe, Mn) and trace metals (Cd, Cu, Pb, Zn) in lake water (0.4 microm pore filtered samples), periphyton, zooplankton, and yellow perch (Perca flavescens) were measured. At pH 5.6, dissolved Mn and Fe increased in the acidified basin. At pH 5.1 and 4.7, dissolved Al, Fe, Mn, Cd and Zn were elevated in the acidified basin. At pH 4.7, dissolved Pb in the acidified basin became elevated over reference basin levels. Dissolved Cu remained similar in both basins down to pH 4.7. Cd burdens in periphyton collected on artificial substrates were lower in the treatment basin at pH 5.1 (1.8 microg g(-1) dry wt.) than in the reference basin at pH 6.1 (7.5 microg g(-1) dry wt.), but Al and Fe burdens in periphyton were similar in both basins. Likewise, Cd levels in muscle tissue of perch from the treatment basin at pH 4.7 were lower (26 ng g(-1) dry wt.) than in the reference basin at pH 6.1 (36 ng g(-1) dry wt.); Al and Fe burdens were similar in perch muscle tissue from both basins. Levels of Cd and Fe in zooplankton from the acidified basin at pH 4.7 were approximately equal to 2x higher than in animals from the reference basin. In both basins of the lake, Al and Cd levels in lake biota decreased with increasing trophic level, demonstrating that food chain biomagnification does not occur for these metals.  相似文献   

18.
Water quality in watersheds is severely impacted by nutrient enrichment as a result of agricultural activities. Understanding hydrological effects on P dynamics can optimize the ecological function of riparian wetlands to reduce nonpoint source pollution. The XiaZhuHu wetlands were selected for field P investigation, and two typical hydrological batch studies of 35 d each (a static column observation simulating the dry season, and a steady-flow flume observation simulating the rainy season) were conducted to understand sediment P dynamics and evaluate capacity of P immobilization. The average equilibrium P concentration of 0.02 mg L?1 among the 31 sampled sediments was generally lower than the average dissolved reactive P concentrations in the overlying water, indicating an ecological role as a P sink. In static simulation observation, there was a fast-pace sorption process during the first 3 d followed by a slower paced process, and the mass of P adsorbed per unit sediment surface (MPAS) reached 0.16 mg cm?2. The temporal curves of P equilibrium between flowthrough water and top sediment (5 cm) were characterized as a quasi “V”-pattern, and the MPAS ranged from ?0.04 to 0.46 mg cm?2 during the steady-flow observation. The newly-trapped P was mainly found in Al-bound P and subsequently as Fe-bound P, which would be helpful for sediment P immobilization. Based on our findings, the sediment of the tested wetlands could retain external P from agricultural land by as much as 10–30 times the area of itself, which accounts for approximately 3.3–10% of the watershed area.  相似文献   

19.
Hyötyläinen T  Oikari A 《Chemosphere》1999,38(5):1135-1144
Sediment samples, divided into three layers (0-10, 10-20 and 20-30 cm), were collected from 16 sites in Lake J?ms?nvesi, Central Finland. The acute toxicity of pore waters and elutriates (sediment + water 1:4 v/v) were studied by bioluminescence inhibition test and by immobilisation of water fleas (Daphnia magna Straus). Concentrations of polycyclic aromatic hydrocarbons (PAHs) in sediments and elutriates were measured by gas chromatography using flame ionization detection (GC/FID). The highest total PAH concentration was 3.3 mg/g dry weight in the sediment and up to 1.7 mg/l in the elutriate of the uppermost (0-10 cm) layer, also being the most toxic to photoluminencent bacteria and water flea. When sediment and water mix, like during dredging operations, toxic compounds may spread from the sediment to the water column and can pose on environmental risk.  相似文献   

20.
Environmental Science and Pollution Research - In this study, the anthropogenic contamination in Trasimeno lake (Central Italy) was investigated using three sediment cores spanning over the last...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号