首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
介绍煤基电厂CO2排放的特征,并从燃烧前、燃烧后和富氧燃烧三个方面介绍了CO2捕集技术的特点。通过分析国内外煤基电厂CO2捕集技术的发展现状,提出我国煤基电厂CO2捕集的主要问题,指出适合中国国情的电厂CO2捕集发展方向。最后对我国全面开展煤基电厂CO2捕集技术基础研究和工业研究提出建议。  相似文献   

2.
介绍了燃煤电厂应对气候变化采取的CO2减排技术路线和适合燃煤电厂的CO2捕集技术,调查了对当前燃煤电厂捕碳项目和清洁煤技术的发展情况.  相似文献   

3.
为降低PSA制氢装置弛放气中CO2捕集系统蒸汽消耗量,利用Aspen Hysys软件建立了CO2捕集工艺模型并对捕集工艺进行模拟研究。考察了胺液循环量、解吸系统贫胺液CO2负载量、富胺液进解吸塔温度和解吸压力对蒸汽消耗量的影响。模拟结果表明,随着胺液循环量和解吸系统贫胺液CO2负载量的增大,CO2解吸单耗先降低后升高,最低约为2.04t水蒸气/tCO2。提高富胺液进解吸塔温度或提高解吸压力均有利于降低CO2解吸单耗。  相似文献   

4.
温室气体CO2的减排问题已经引起了国际社会的极大关注。火电行业是CO2排放量的主体。燃煤电厂实施碳减排和碳零排放是走向清洁能源必由之路。目前,燃煤电厂实施CO2的减排主要是从常规燃煤电厂烟道气分离CO2,其中,电厂CO2捕集技术路线主要包括燃烧后脱碳、燃烧前脱碳、富氧燃烧以及化学链燃烧技术。  相似文献   

5.
CO2回收和捕集技术新进展   总被引:1,自引:0,他引:1  
介绍了国内外CO2回收和捕集新技术的研究进展。  相似文献   

6.
调研常规尾气处理工艺的研究现状、现场应用情况及发展趋势,对比分析尾气焚烧、硫回收、CO2捕集以及酸气回注等尾气处理工艺技术的优缺点,提出在火驱开采尾气处理时,应结合其尾气量大、酸气含量高的特性,综合考虑经济效益和社会效益,因地制宜地选择适用工艺。  相似文献   

7.
在2060年碳中和目标的要求下,碳捕集、利用与封存技术将扮演重要角色。目前碳捕集、利用与封存技术在中国尚处于工业示范阶段,面临技术成熟度不足、经济成本高、融资渠道单一、应用领域有限、盈利能力差等障碍,迫切需要建立合理的商业模式以推进技术部署。本文梳理了国际上现有的碳捕集、利用与封存商业化项目和相关支持政策,基于商业模式画布的研究框架,分析了碳捕集、利用与封存商业化部署的现状、特点与障碍,并在此基础上提出了相应建议,包括加强技术研发、完善政策体系、布局基础设施和促进集群建设。  相似文献   

8.
针对烟气CO_2捕集药剂的筛选主要集中在药剂成本、药剂对CO_2的吸收、解析性能、碳捕集技术的再生能耗等方面,忽略了药剂在重复连续使用过程中的降解以及降解产物的环境安全性这一情况,对365t/d的CO_2捕集工况进行了一乙醇胺(MEA)降解产物亚硝胺的大气扩散及健康风险分析。为完善碳捕集的安全性评价体系提供理论支持。  相似文献   

9.
碳捕集与封存是我国石油行业的重要转型发展机遇,重点研究CCS两个较为成熟的主要方向对石油行业的机遇,一是在地质封存CO2同时提高石油天然气采收率,即CCS-EOR,另一个是利用盐水层(也称咸水层)或其它地下空间对CO2进行封存。文章论述了CCS对于温室气体减排的重要作用,CCS作为我国石油行业转型发展机遇的分析。CCS是我国石油行业的重要转型发展机遇,国内石油公司应对CCS进行重点研究和适度发展。  相似文献   

10.
《中国环保产业》2004,(11):44-44
由无锡市东方环境工程设计研究所有限公司和无锡市东方工业环保有限公司开发、江苏省环境保护产业协会推荐的上吸式高炉出铁口烟气捕集除尘系统适用于高炉出铁场(出铁口、出渣口、铁水罐)、高炉上料、高炉槽上槽下等系统除尘。主要技术内容一、基本原理烟气热抬升和风速的差速分配原理。二、技术关键1.捕集装置充分利用烟气的热抬升力诱导捕集、符合流体动力学降低捕集罩的结构阻力,确保烟尘的捕集率;2.优化管网设计、控制管道内烟尘流速,确保管网系统阻力的合理性和风量分配的平衡;3.采用低阻抗结露脉冲离线清灰除尘器专利技术,保证了较低…  相似文献   

11.
Post-combustion CO2 capture remains one of the most-challenging issue to lower CO2 emissions of existing power plants or heavy industry installations because of strong economy and energy efficiency aspects. The major issue comes from CO2 dilution (4% for NGCC and 14% for PC) and the high flow rates to be treated. Furthermore, CO2 purity has to be higher than 95% with recovery at 90%, to match the transportation/injection requirements.The MEA absorption process remains the reference today but its energy consumption (about 3 MJ/kgCO2) and the amine consumption are still challenging drawbacks.The interest of CO2 capture by indirect TSA (Temperature Swing Adsorption) was demonstrated experimentally in a previous work. The aim of this paper is to present the results of a numerical parametric study. Two main parameters are explored: the desorption temperature (100–200 °C) and the purge flow rate (0.1–0.5 Ndm3 min−1). Four performance indicators are evaluated: CO2 purity, recovery, productivity and specific energy consumption.Results show that purity above 95% can be achieved. Keeping the 95% target, it is possible to achieve recovery at 81% with productivity at 57.7 gCO2/kgads h and a specific energy consumption of 3.23 MJ/kgCO2, which is less than for the reference MEA process.Comparison with other adsorption processes exhibits that this process has good potential especially since some improvements are still expected from further research.  相似文献   

12.
The oxyfuel process is one of the most promising options to capture CO2 from coal fired power plants. The combustion takes place in an atmosphere of almost pure oxygen, delivered from an air separation unit (ASU), and recirculated flue gas. This provides a flue gas containing 80–90 vol% CO2 on a dry basis. Impurities are caused by the purity of the oxygen from the ASU, the combustion process and air ingress. Via liquefaction a CO2 stream with purity in the range from 85 to 99.5 vol% can be separated and stored geologically. Impurities like O2, NOX, SOX, and CO may negatively influence the transport infrastructure or the geological storage site by causing geochemical reactions. Therefore the maximum acceptable concentrations of the impurities in the separated CO2 stream must be defined regarding the requirements from transportation and storage. The main objective of the research project COORAL therefore is to define the required CO2 purity for capture and storage.  相似文献   

13.
The calcination/carbonation cycle using calcium-based sorbents appears to be a viable method for carbon dioxide (CO?) capture from combustion gases. Recent attempts to improve the CO?/SO? uptake of a calcium-based sorbent modified by using rice husk ash (RHA) in the hydration process have succeeded in enhancing its effectiveness. The optimal mole ratio of RHA to calcined limestone (M(Si/Ca)) was adjusted to 0.2. The cyclic CO? capture characteristics and the SO? uptake activity of the modified sorbent were evaluated in a calcination/pressurized carbonation reactor system. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) spectrum of the sorbent were also taken to supplement the study. The results showed that the carbonation conversion was greatly increased for the sorbent with M(Si/Ca) ratio of 0.2. For this sorbent formulation the optimal operating conditions were 700-750 °C and 0.5-0.7 MPa. CO? absorption was not proportional to CO? concentration in the carbonation atmosphere, but was directly related to reaction time. The CO? uptake decreased in the presence of SO?. SO? uptake increased, and the total calcium utilization was maintained over multiple cycles. Analysis has shown that the silicate component is evenly or well distributed, and this serves as a framework to prevent sintering, thus preserving the available microstructure for reaction. The sorbent also displayed high activity to SO? absorption and could be used to capture CO? and SO? simultaneously.  相似文献   

14.
Post combustion carbon dioxide (CO2) capture is one of the most commonly adopted technologies for reducing industrial CO2 emissions, which is now an important goal given the widespread concern over global warming. Research on amine-based CO2 capture has mainly focused on improving effectiveness and efficiency of the CO2 capture process. Our research work focuses on studying the relationships among the significant parameters influencing CO2 production because an enhanced understanding of the intricate relationships among the parameters involved in the process is critical for improving efficiency of the CO2 capture process. This paper presents a statistical study that explores the relationships among parameters involved in the amine-based post combustion CO2 capture process at the International Centre for CO2 Capture (ITC) located in Regina, Saskatchewan of Canada. A multiple regression technique has been applied for analysis of data collected at the CO2 capture pilot plant at ITC. The parameters have been carefully selected to avoid issues of multicollinearity, and four mathematical models among the key parameters identified have been developed. The models have been tested, and accuracy of the models is found to be satisfactory. The models developed in this study describe part of the CO2 capture process and can help to predict performance of the CO2 capture process at ITC under different conditions. Some results from a preliminary validation process will also be presented.  相似文献   

15.
In order to establish energy-saving technology for CO2 capture from blast furnace gas, novel absorbents were developed in the laboratory and evaluated at a 1 tCO2/d test plant. At first, CO2 absorption and desorption behaviors of single-component amine solvents for simulated blast furnace gas (CO2/N2 = 20%/80%) were investigated through a screening test using a small scrubbing bottle. These amine solvents were additionally analyzed using nuclear magnetic resonance (13C NMR) spectroscopy and reaction calorimetry. The results of the laboratory experiments showed that there was a trade-off between absorption rate and enthalpy of absorption but some absorbents had unique features. For example, 2-isopropylaminoethanol (IPAE) had high absorption rate and small enthalpy of absorption. Then, new IPAE-based amine solvents (RITE solvents: RITE-A and RITE-B) were formulated and evaluated at the 1 tCO2/d test plant. CO2 regeneration energies of the RITE solvents were 3.3 and 3.1 GJ/tCO2, respectively. With certain process conditions and plant specifications optimized, RITE-B was estimated to have the potential to achieve 2.5 GJ/tCO2.  相似文献   

16.
In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.  相似文献   

17.
大多数天然气藏CO2含量为10%~98%,CO2在不同的温度、压力条件下腐蚀极其严重。文章主要针对高含CO2天然气运输管道腐蚀的问题,开展缓蚀剂的筛选,重点开展CO2腐蚀规律研究与实验,评价环境温度、CO2分压、流动速度对腐蚀规律的影响,明确缓蚀剂的影响因素,结合管材的材质,优选评价不同类型的缓蚀剂,缓蚀效率分别为90.53%和92.64%,在管道凝液介质的气相及液相中都有较高的缓蚀效率。通过设计现场加药工艺及制度,监测评价缓蚀剂缓释效果和腐蚀情况,可防止管道运输过程中CO2腐蚀的侵害,长输管线内腐蚀控制良好。  相似文献   

18.
赵卉  刘永祺 《四川环境》2008,27(2):60-63
本文目的在于讨论和分析二氧化碳捕获和储存技术项目(CCS)作为清洁发展机制(CDM)项目的障碍和机遇。CCS被视为减少CO2人为排放量的选择方案之一,但在发展中国家,该技术面临着政策、成本和技术上的挑战。对这些国家而言,CDM几乎是发展CCS的唯一动机。本文分析了CCS作为CDM项目面临的项目边界、持久性、渗漏和可持续发展性的问题,并展望了未来的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号