首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of microbial hot spots enhances pesticide degradation in soils   总被引:1,自引:0,他引:1  
Through transfer of an active, isoproturon degrading microbial community, pesticide mineralization could be successfully enhanced in various soils under laboratory and outdoor conditions. The microbes, extracted from a soil having high native ability to mineralize this chemical, were established on expanded clay particles and distributed to various soils in the form of microbial "hot spots". Both, diffusion controlled isoproturon mass flow towards these "hot spots" (6microg d(-1)) as well as microbial ability to mineralize the herbicide (approximately 5microg d(-1)) were identified as the main processes enabling a multiple augmentation of the native isoproturon mineralization even in soils with heavy metal contamination. Soil pH-value appears to exert an important effect on the sustainability of this process.  相似文献   

2.
A suspended-growth bioreactor (SGB) was operated for the treatment of a gaseous stream mimicking emissions generated at a leather industrial company. The main volatile organic compounds (VOCs) present in the gaseous stream consisted of 1-methoxy-2-propanol, 2,6-dimethyl-4-heptanone, 2-butoxyethanol, toluene and butylacetate. A microbial consortium able to degrade these VOCs was successfully enriched. A laboratory-scale SGB was established and operated for 210-d with an 8h cycle period and with shutdowns at weekends. Along this period, the SGB was exposed to organic loads (OL) between 6.5 and 2.3 x 10(2) g h(-1) m(-3). Most of the compounds were not detected at the outlet of the SGB. The highest total VOC removal efficiency (RE) (ca 99%) was observed when an OL of 1.6 x 10(2) g h(-1) m(-3) was fed to the SGB. The maximum total VOC elimination capacity (1.8 x 10(2) g h(-1) m(-3)) was achieved when the OL applied to the SGB was 2.3 x 10(2) g h(-1) m(-3). For all the operating conditions, the SGB showed high levels of degradation of toluene and butylacetate (RE approximately equal to 100%). This study also revealed that recirculation of the gaseous effluent improved the performance of the SGB. Overall, the SGB was shown to be robust, showing high performance after night and weekend shutdown periods.  相似文献   

3.
由于航空工业的特殊性,航空企业节能减排相对滞后,节能减排工作迫在眉睫.为使航空工业节能减排的方案全面、科学、客观,基于现代风险评价方法,根据中国航空企业系统的客观实际,采用模糊综合评价法建立了航空企业节能减排的评价指标体系和评价方法,并确定了该评价指标体系中各指标的权重,进而得到各指标隶属度、模糊矩阵.同时,进行了实例...  相似文献   

4.
The purpose of this study is to demonstrate a methodology for quantification of high emissions hot spots along roadways based upon real-world, on-road vehicle emissions measurements. An emissions hot spot is defined as a fixed location along a corridor in which the peak emissions are statistically significantly greater by more than a factor of 2 than the average emissions for free-flow or near free-flow conditions on the corridor. A portable instrument was used to measure on-road tailpipe emissions of carbon monoxide, nitric oxide, hydrocarbons, and carbon dioxide on a second-by-second basis during actual driving. Measurements were made for seven vehicles deployed on two primary arterial corridors. The ratio of average emissions at hot spots to the average emissions observed during a trip was as high as 25 for carbon monoxide, 5 for nitric oxide, and 3 for hydrocarbons. The relationships between hot spots and explanatory variables were investigated using graphical and statistical methods. Average speed, average acceleration, standard deviation of speed, percent of time spent in cruise mode, minimum speed, maximum acceleration, and maximum power have statistically significant associations with vehicle emissions and influence emissions hot spots. For example, stop-and-go traffic conditions that result in sudden changes in speed, and traffic patterns with high accelerations, are shown to generate hot spots. The implications of this work for future model development and applications to environmental management are discussed.  相似文献   

5.
Environmental Science and Pollution Research - Hydrothermal liquefaction (HTL) of biomass used HTL reaction under high temperature and pressure to produce bio-oil. This technology is considered as...  相似文献   

6.
Emission rates of ammonia, acid gases, inorganic aerosols, methane, and size fractionated particulate matter were measured from a commercial broiler facility. This paper discusses the statistically influential parameters on numerous pollutants’ emission from a broiler chicken facility and generates emission correlations to fill data gaps and develop averaged emission factors.Live mass of the birds was commonly a significant variable to each pollutant’s emission. Some variables significantly impacted the pollutants’ emissions, such as litter moisture content, but were measured discretely and cannot be used for filling in data gaps.House parameter correlations were, therefore, developed using parameters measured at the facility, such as indoor temperature, relative humidity, and the live mass of the birds, and relied on the mutual behaviour of discretely measured explanatory parameters and continuously monitored confounding variables. The live mass and the difference in the indoor temperature and the house set-point temperature were the most significant variables in each pollutant’s correlation.The correlations predicted each pollutants emission to within 20% (total mass basis) over most broiler production cycles. Their validation on independent datasets also successfully estimated the flocks’ emissions to within 3%.Emission factors (EFs) were developed for methane, ammonia, and size fractionated particulate matter using measured data and correlated emissions to fill in data gaps. PM10 (particulate matter ≤10 microns) EFs were estimated to be 4.6 and 5.9 g d?1 [Animal Unit, AU]?1 for five and six week production cycles, respectively. PM2.5 (PM ≤ 2.5 microns) EFs were 0.8 and 1.4 g d?1 AU?1 for five and six week cycles, respectively. Ammonia and methane emission factors were estimated at 120.8 and 197.0 g d?1 AU?1, respectively for a five week production cycle.  相似文献   

7.
Theoretical consideration of methane emission from sediments   总被引:2,自引:0,他引:2  
Bazhin NM 《Chemosphere》2003,50(2):191-200
A stationary theory of gas emission from sedimentary (active) layers of wetlands is developed. The theory takes into account methane generation in a sedimentary layer (W1) and its depth dependence, (W1(z)), the solubility, determined by Henry's constant (K1), and the mobility of methane molecules set by the methane diffusion coefficient (D1). The exponential dependence of methane generation rate decay with depth is considered in more detail. The penetration of atmospheric nitrogen into the active layer is also taken into consideration. It is shown that the value of diffusion methane flux from sedimentary layers is proportional to square root(K1D1P0W10) where P0 characterizes the atmospheric pressure and W10 characterizes the maximum generation rate. Coefficients relating the diffusion methane flux to the square root(K1D1P0W10) value are calculated for the different depth dependencies of methane generation rate. The values of these coefficients are not much different from unity for most real cases.  相似文献   

8.
9.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min?1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly.For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NOx and NO2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NOx emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.  相似文献   

10.
根据中国中小型钢铁企业污染物排放情况,确立了污染物排放削减潜力评估方法。采用污染物排放削减潜力的数学模型,计算当前生产水平下实施清洁生产和末端治理后对SO2产生量和烟粉尘排放量的削减率,并预测中长期实施清洁生产和末端治理后,污染物产生量和排放量的削减潜力。结果表明,通过采取清洁生产措施和末端治理技术,中小型钢铁企业2020年在4种不同模式下,SO2产生量削减率分别为61.8%、66.4%、73.3%、84.7%;烟粉尘排放量削减率分别为37.9%、44.1%、53.4%、68.9%。通过污染物排放削减潜力的初步研究,不仅从宏观层次上说明了实施清洁生产和末端治理技术的积极意义,而且计算出不同经济发展模式下污染物产生量和排放量的削减量,为行业或区域污染物总量的指标分配和总量控制方案的制订提供了参考依据。  相似文献   

11.
研究了活性炭对甲苯废气的吸附穿透过程及热空气解吸过程.穿透曲线实验结果表明,在常规空塔气速范围内,传质区高度基本在5.06~9.75 cm,传质区不饱和度在0.4~0.7.在动态运行情况下,活性炭对甲苯的饱和吸附容量在0.16~0.24 g/g.热空气吹脱实验表明,适宜的脱附工况条件为脱附温度180 ℃、脱附空气流速0.106 m/s、脱附时间40 min.  相似文献   

12.
A two-resistance exchange interface model (TREIM) was developed to simulate gaseous mercury (Hg) emissions from soils measured by dynamic flux chamber (DFC) operations. The model is based on mass balance principles and a Hg air/soil exchange theory that considers the influence of flushing flow rate on Hg air/soil exchange. We used this model to examine the effect of the flushing flow rate and understand the optimum conditions for DFC measurements of Hg emission fluxes over soils. Our model simulations indicate that the flushing flow rate is a most critical operation condition. We recommend adoption of high flushing flow rates (e.g., ∼15–40 l min−1 for DFCs of common design) based on our simulation findings that underestimation of actual emission fluxes can occur at low flushing flow rates. The biased low fluxes are caused by suppression of emission potential resulting from internal accumulation of emitted Hg and by higher exchange resistance both at low flushing flow rates. This model provides a useful means for estimating maximum steady-state fluxes and soil air Hg concentrations and for adjustment of the fluxes measured under different operating conditions. The model also finds its value in understanding mechanical processes of Hg emissions from soils.  相似文献   

13.
The performance of gaseous air cleaners for commercial and residential buildings has typically been evaluated using test protocols developed for a controlled laboratory chamber or a test duct. It is currently unknown how laboratory measurements relate to the actual performance of an air cleaner installed in a real building. However, to date, there are no air cleaner field test protocols available, thereby limiting the existing field data. The National Institute of Standards and Technology (NIST) has conducted a series of experiments to support test procedure development for evaluating the installed performance of gaseous air cleaning equipment, as well as metrics for characterizing field performance. To date, over 100 experiments have been completed, of which 23 portable air cleaner experiments and 6 in-duct air cleaner experiments are described in this paper. Tests were conducted in a finished three-bedroom/two-bathroom manufactured house equipped with several gas chromatographs to semi-continuously measure air change rates and volatile organic compound concentrations. Experimental variables included air cleaner location, isolation of zones by closing doors, and contaminant source location. For each experiment, air cleaner removal of decane was directly measured using the air cleaner inlet and outlet concentrations, as well as with mass balance analyses using measured room concentrations. With a verified mass balance model, a field performance metric was developed to compare installed whole-building performance to the performance predicted by a laboratory result. The results provide insight into the protocols and metrics that might prove useful for characterizing the field performance of air cleaners as well as the impact of air cleaner removal on zonal concentration levels in a variety of situations.  相似文献   

14.
Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NOx) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NOx. Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is ?23% for NOx, ?30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NOx emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NOx emissions are higher because the NOx emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NOx emissions and differences in HC speciation on ozone formation should be further evaluated.

Implications: Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus gasoline have been inconsistent. To date, this is the most comprehensive evaluation of available and new data. The large range of inter-vehicle variability illustrates why prior studies based on small sample sizes led to apparently contradictory findings. E85 leads to significant reductions in tailpipe nitrogen oxide (NOx) and carbon monoxide (CO) emission rates compared with gasoline, indicating a potential benefit for ozone air quality management in NOx-limited areas. The comparison of FFV tailpipe emissions between E85 and gasoline is sensitive to power demand and driving cycles.  相似文献   

15.
Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

16.
Abstract

A quantification analysis for evaluation of gaseous pollutant volatilization as a result of mass transfer from stored swine manure is presented from the viewpoint of residence time distribution. The method is based on evaluating the moments of concentration vs. time curves of both air and gaseous pollutants. The concept of moments of concentration histories is applicable to characterize the dispersal of the supplied air or gaseous pollutant in a ventilated system. The mean age or residence time of airflow can be calculated from an inverse system state matrix [B]‐1 of a linear dynamic equation describing the dynamics of gaseous pollutant in a ventilated airspace. The sum elements in an arbitrary row i in matrix [B]‐1 is equal to the mean age of airflow in airspace i. The mean age of gaseous pollutant in airspace i can be obtained from the area under the concentration profile divided by the equilibrium concentration reading in that space caused by gaseous pollutant sources. Matrix [B]‐1 can also be represented in terms of the inverse local airflow rate matrix ([W]‐1), transition probability matrix ([P]), and air volume matrix ([V]) as, [B]‐1 =[W]‐1[P][V]. Finally the mean age of airflow in a ventilated airspace can be interpreted by the physical characteristics of matrices [W] and [P]. The practical use of the concepts is also applied in a typical pig unit.  相似文献   

17.
18.
We apply an inverse problem approach to locating a known gas source in a desert setting from simultaneous measurements of gas concentration and wind data. We use a random search algorithm with simulated annealing to generate candidate distributions of source strengths and positions. These distributions are then assessed by means of a cost function, which quantifies the degree to which the postulated source distribution accounts for the measured gas concentrations. We present results from using three cost functions with differing regularisation terms. We assess the robustness of these and the differing regularisation terms by the progressive addition of random noise and systematic offsets to the concentration data. We show that for our application, the best reconstructions are obtained by using a multiplicative regularisation parameter defined to minimise the total gas emissions.  相似文献   

19.
At the onset of the 2010 statutory deadline for the respect of the European National Emission Ceiling directive, two questions arise. Will the engaged regulations for the respect of ozone air quality thresholds be fully efficient on the most polluted regions? How can we design the continuation of ozone control in those areas? This study is based on refined 3D modelling studies over a French Mediterranean region. It compares 2001 and 2003 situations with several prospective 2010 emission scenarios with, for the first time, the evaluation of local action plans. The degree of compliance with air quality regulation is investigated and the impact of emission control on the local potential for ozone formation is discussed. The results show that current efforts on emissions, although substantial and efficient, are not sufficient yet to abrogate all the ozone threshold exceedances. They also highlight the gap between regulatory and effective emission control, as well as the need for regional regulations to complete national efforts. Finally, the simulations indicate that large-scale emission control significantly helps reducing rural ozone (?20 ppbv) but affects much fewer (?2 to ?10 ppbv) the highest peaks. The continuation and the strengthening of ozone policies under their current form in such regions are considered.  相似文献   

20.
Laser-induced breakdown spectroscopy (LIBS) has been evaluated as a multimetal continuous emissions monitor (CEM) at the U.S. Environmental Protection Agency (EPA) rotary kiln incinerator simulator (RKIS) facility in Raleigh, NC. Two detection systems with a bifurcated optical fiber bundle were used for simultaneously monitoring the concentrations of Be, Cd, Cr, and Hg in the test. Two calibration techniques were evaluated in the laboratory for the field measurements. On-line calibration of relative metal concentration was also performed in the simulated incinerator gas stream. Toxic metal concentrations measured with LIBS have been compared with the EPA reference method (RM) results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号