首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper evaluated the feasibility of using the horizontal radial plume mapping (HRPM) technique to locate multiple emission sources via computational simulation. Seventy-two test maps, each having two Gaussian distributions, were generated in a two-dimensional domain. The HRPM technique with the non-negative least square (NNLS) algorithm was then applied to reconstruct the plumes, assuming a nine-beam scanning beam geometry. The NNLS algorithm successfully reconstructed the source locations of 68 of the 72 test maps. However, when one of the plumes was near the origin, the NNLS did not always identify the peak locations correctly. Furthermore, when the two plumes were spaced closely, the NNLS tended to reconstruct a wide plume covering both plumes instead of separating them due to the resolution limitation of the current nine-beam geometry. In the sensitivity analysis, five sets of random error (1%, 5%, 10%, 20%, and 30%) were added in the path-integrated concentration (PIC) from the 72 test maps, and thus, an additional 360 reconstructions were implemented. Robust results were obtained when the noise added was less than 20%. The results generally support the implementation of the NNLS algorithm in the HRPM technique as described in the U.S. Environmental Agency (EPA) Other Test Method 10 (OTM-10).

Implications: The methodology evaluated in this paper provides near-real-time estimates about the locations of multiple emission sources. The involved optical remote sensing instruments can monitor large spatial areas (e.g., landfills) in a cost-effective way.  相似文献   

2.
We describe the first experimental evaluation of a non-overlapping radial beam geometry to map air pollutants using computed tomography (CT) and optical remote sensing (ORS) instruments. Nitrous oxide was released from a point source inside a 11 m long×5.4 m wide ventilation chamber. An open path Fourier transform infrared (OP-FTIR) spectrometer gathered path integrated concentration data. The smooth basis function minimization (SBMF) CT algorithm was applied to a radial geometry with 19 rays. Two-dimensional maps were reconstructed from the OP-FTIR measurements and compared with kriged maps calculated from 13-point samples collected simultaneously during the experiments. The CT reconstructions showed good agreement compared to the kriged maps obtained from point samples (concordance correlation factor >0.55). The CT reconstructions also located the peak concentration within 1.2 m compared to the point samplers. In contrast to the complex CT beam geometries proposed in the past, the development of this radial scanning configuration could broaden the application of CT to many optical remote sensing instruments.  相似文献   

3.
This paper presents a new approach to quantify emissions from fugitive gaseous air pollution sources. The authors combine Computed Tomography (CT) with Path-Integrated Optical Remote Sensing (PI-ORS) concentration data in a new field beam geometry. Path-integrated concentrations are sampled in a vertical plane downwind from the source along several radial beam paths. An innovative CT technique, which applies the Smooth Basis Function Minimization method to the beam data in conjunction with measured wind data, is used to estimate the total flux from the fugitive source. The authors conducted a synthetic data study to evaluate the proposed methodology under different meteorological conditions, beam geometry configurations, and simulated measurement errors. The measurement errors were simulated based on data collected with an Open-Path Fourier Transform Infra-Red system. This approach was found to be robust for the simulated errors and for a wide range of fluctuating wind directions. In the very sparse beam geometry examined (eight beam paths), successful emission rates were retrieved over a 70 degrees range of wind directions under extremely large measurement error conditions.  相似文献   

4.
The Hanai-Bruggeman effective medium theory is used to relate bulk electrical conductivity, measured by surface and cross-borehole images, to fluid electrical conductivity, surface conductance, porosity and the geometry factor, in a medium- to fine-grained sand deposit. The change in bulk EC is caused by the presence of a landfill leachate plume. Repeated electrical images over a period of 16 months indicate that various segments of the plume are moving. The chemical constituents of the leachate plume have been determined by sampling from a bundled piezometer located in the electrical image field. Very close agreement is demonstrated between the fluid EC anomaly and the presence of elevated bulk EC indicating that the electrical images can be used to map the plume geometry and to monitor the movement of the plume segments.  相似文献   

5.
ABSTRACT

This paper presents a new approach to quantify emissions from fugitive gaseous air pollution sources. The authors combine Computed Tomography (CT) with Path-Integrated Optical Remote Sensing (PI-ORS) concentration data in a new field beam geometry. Path-integrated concentrations are sampled in a vertical plane downwind from the source along several radial beam paths. An innovative CT technique, which applies the Smooth Basis Function Minimization method to the beam data in conjunction with measured wind data, is used to estimate the total flux from the fugitive source. The authors conducted a synthetic data study to evaluate the proposed methodology under different meteorological conditions, beam geometry configurations, and simulated measurement errors. The measurement errors were simulated based on data collected with an Open-Path Fourier Transform Infra-Red system. This approach was found to be robust for the simulated errors and for a wide range of fluctuating wind directions. In the very sparse beam geometry examined (eight beam paths), successful emission rates were retrieved over a 70° range of wind directions under extremely large measurement error conditions.  相似文献   

6.
Abstract

Beam path average data from an Open Path Fourier Transform Infrared (OP-FTIR) spectrometer can be used to reconstruct two-dimensional concentration maps of the gas and vapor contaminants in workplaces and the environment using computed tomographic (CT) techniques. However, a practical limitation arises because in the past, multiple-source and detector units were required to produce a sufficient number of intersecting beam paths in order to reconstruct concentration maps. Such a system can be applied to actual field monitoring situations only with great expense and difficulty. A single monostatic OP-FTIR system capable of rapid beam movement can eliminate this deficiency. Instead of many source and detector units, a virtual source arrangement has been proposed using a number of flat mirrors and retroreflectors to obtain intersecting folded beam paths.

Three virtual source beam configurations generated for a single-beam steerable FTIR system were tested using 54 flat mirrors and four retroreflectors or 54 flat mirrors and 56 retroreflectors mounted along the perimeter walls of a typical 24- x 21-ft test room. The virtual source CT configurations were numerically evaluated using concentration maps created from tracer gas concentration distributions measured experimentally in a test chamber. Synthetic beam path integral data were calculated from the test maps and beam configurations. Computer simulations of different beam configurations were used to determine the effects of beam geometry. The effects of noise and peak-reducing artifacts were evaluated. The performance of the tomographic reconstruction strategy was tested as a function of concentration and concentration gradients.  相似文献   

7.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

8.
At a site with discontinuous permafrost in Fairbanks, Alaska, releases of trichloroethene (TCE), an industrial solvent, have caused contamination of the groundwater. The objective of this study was to investigate the relationship between the migration pathway of the TCE groundwater plume and the distribution of the discontinuous permafrost at the site. The TCE plume configuration is substantially different than what regional hydrology trends would predict. Using GIS, we conducted a geostatistical analysis of field data collected during soil-boring installations and groundwater monitoring well sampling. With the analysis results, we constructed maps of the permafrost-table elevation (top of permafrost) and of the groundwater gradients and TCE concentrations from multiyear groundwater sampling events. The plume concentrations and groundwater gradients were overlain on the permafrost map to correlate permafrost locations with groundwater movement and the spatial distribution of TCE moving with groundwater. Correlation of the overlay maps revealed converging and diverging groundwater flow in response to the permafrost-table distribution, the absence of groundwater contamination in areas with a high permafrost-table elevation, and channeling of contaminants and water between areas of permafrost. In addition, we measured groundwater elevations in nested wells to quantify vertical gradients affecting TCE migration. At one set of nested wells down gradient from an area of permafrost we measured an upward vertical gradient indicating recharge of groundwater from the subpermafrost region of the aquifer causing dilution of the plume. The study indicates that the variable distribution of the permafrost is affecting the way groundwater and TCE move through the aquifer. Consequently, changes to the permafrost configuration due to thawing would likely affect both groundwater movement and TCE migration, and areas that were contaminant-free may become susceptible to contamination.  相似文献   

9.
Real-time ozone (O3) maps, intended for public access and mass media, are generated from spatially interpolating (i.e., kriging) sparse monitoring data and are typically characterized by over-smoothed surfaces that inadequately represent local-scale spatial patterns (e.g., averaged over 1 km2). In this paper, a hybrid regression-interpolation methodology is developed to enhance the representation of local-scale spatiotemporal patterns with an application to Tucson, Arizona. The mapping of local patterns is enhanced with pre-interpolation regression modeling of local-scale deviation-from-mean variability, preserving variation in the monitor data that is ubiquitous across the modeling domain (i.e., the areal mean). The model is trained on several years of deviation-from-mean hourly O3 data, and predictor variables are developed using theoretically and empirically derived proxy regression variables. The regression model explains a significant proportion of the variation in the data (r2 = 0.54), with an average error of 7.1 ppb. When augmented with the areal mean, the r2 of the pre-interpolation model increases to 0.847. Model residuals are then spatially interpolated to the extents of the modeling domain. Final concentration estimate maps are the summation of areal mean, regression, and spatially interpolated surfaces, preserving absolute values at monitor locations.  相似文献   

10.
The reactive and optics model of emissions (ROME) is a reactive plume visibility model that simulates the potential atmospheric impacts of stack emissions. We present here an evaluation of the ability of ROME to simulate several plume physical and chemical variables, using an experimental data base that consists of a total of 40 case studies from four field programs. The evaluation variables include plume height, horizontal width, NOx and SO2 maximum concentrations, NO2/NOx concentration ratio at the plume centerline, and plume-to-sky radiance ratios. Three algorithms used to simulate plume dispersion in ROME were compared: (1) the empirical Pasquill–Gifford–Turner (PGT) scheme, (2) a first-order closure (FOC) algorithm and (3) a second-order closure (SOC) algorithm that simulates the instantaneous plume dimensions.The plume height results show a correlation of 0.82 between simulated and measured values and a gross error that is 13% of the mean measured value. For plume horizontal dispersion, the second-order closure algorithm produces a moderate correlation (0.54) and a small bias (5% of the mean measured value) in comparison with the field data. Although the PGT scheme also demonstrates moderate correlation with the measurements, it produces a negative bias by significantly underestimating plume horizontal dispersion. The first-order closure algorithm overestimates plume width and shows the least correlation (with the measurements) of the three dispersion algorithms.For the NYSEG data set where coordinated measurements of stack emissions, meteorology at plume height and plume characteristics were available, the SOC algorithm provides better correlations for NOx concentrations, NO2/NOx ratios and plume visibility than the FOC and PGT algorithms. For plume visibility, the SOC algorithm shows a correlation of 0.96 at 405 nm, the wavelength where the plume was visible, and it simulates no visible plume at the other wavelengths (550 and 700 nm).A comparison of ROME simulations with those of the plume visibility model PLUVUE II shows that ROME, with the SOC algorithm, performs better for all variables.  相似文献   

11.
Stibig HJ  Malingreau JP 《Ambio》2003,32(7):469-475
The study provides an example of mapping tropical forest cover from SPOT-Vegetation satellite images of coarse spatial resolution (1 km) for the subregion of insular Southeast Asia. A satellite image mosaic has been generated from satellite images acquired for the period 1998 to 2000. Forest cover has been mapped by unsupervised digital classification. The mapping result has then been compared to selected forest maps from the subregion, demonstrating the potential to provide basic information on forest area extent and distribution, but also on massive forest cover change in the subregional context. Forest area estimates derived from the map for the subregion have been found comparable to those compiled by FAO. The results indicate that many of the remaining tropical forests in Southeast Asia, rich in timber resources and biodiversity, may be lost in the near future if deforestation continues at present or previous rates.  相似文献   

12.
A quantitative methodology is described for the field-scale performance assessment of natural attenuation using plume-scale electron and carbon balances. This provides a practical framework for the calculation of global mass balances for contaminant plumes, using mass inputs from the plume source, background groundwater and plume residuals in a simplified box model. Biodegradation processes and reactions included in the analysis are identified from electron acceptors, electron donors and degradation products present in these inputs. Parameter values used in the model are obtained from data acquired during typical site investigation and groundwater monitoring studies for natural attenuation schemes. The approach is evaluated for a UK Permo-Triassic Sandstone aquifer contaminated with a plume of phenolic compounds. Uncertainty in the model predictions and sensitivity to parameter values was assessed by probabilistic modelling using Monte Carlo methods. Sensitivity analyses were compared for different input parameter probability distributions and a base case using fixed parameter values, using an identical conceptual model and data set. Results show that consumption of oxidants by biodegradation is approximately balanced by the production of CH4 and total dissolved inorganic carbon (TDIC) which is conserved in the plume. Under this condition, either the plume electron or carbon balance can be used to determine contaminant mass loss, which is equivalent to only 4% of the estimated source term. This corresponds to a first order, plume-averaged, half-life of > 800 years. The electron balance is particularly sensitive to uncertainty in the source term and dispersive inputs. Reliable historical information on contaminant spillages and detailed site investigation are necessary to accurately characterise the source term. The dispersive influx is sensitive to variability in the plume mixing zone width. Consumption of aqueous oxidants greatly exceeds that of mineral oxidants in the plume, but electron acceptor supply is insufficient to meet the electron donor demand and the plume will grow. The aquifer potential for degradation of these contaminants is limited by high contaminant concentrations and the supply of bioavailable electron acceptors. Natural attenuation will increase only after increased transport and dilution.  相似文献   

13.
Numerical experiments and field results on the size of steady state plumes   总被引:1,自引:0,他引:1  
Contaminated groundwater poses a serious risk for drinking water supplies. Under certain conditions, however, groundwater contamination remains restricted to a tolerable extent because of natural attenuation processes. We present an innovative approach to evaluate the size of these so-called steady-state plumes by 2-D and 1-D modelling in homogeneous aquifers. If longitudinal mixing is negligible, scenarios can be modelled in a simplified way using a 1-D domain vertical to the direction of flow. We analysed the sensitivity of the plume length with respect to biodegradation kinetics, flow velocity, transverse vertical dispersivity alphat, the source and aquifer geometry and reaction stoichiometry. Our findings indicate that for many readily biodegradable compounds transverse-dispersive mixing rather than reaction kinetics is the limiting factor for natural attenuation. Therefore, if alphat, aquifer and source geometry and concentrations of electron acceptors and donors are known, the length of the steady state contaminant plume can be predicted. The approach is validated under field conditions for an ammonium plume at a former landfill site in SW Germany.  相似文献   

14.
We present a plume rise model which can be applied to situations with arbitrary wind fields and source exit directions and to both dry and wet plumes. The model is an integral model which considers plume properties averaged over the plume cross section. It is validated by means of water tank, wind tunnel, and field experiments (stacks and cooling towers).  相似文献   

15.
Natural gas often contains high concentrations of hydrogen sulfide which must be removed before the gas can be transmitted by pipeline. Sour gas plants extract the sulfur, by converting it to elemental sulfur through a modified Claus process. The sulfur recovery is 93% for small plants (10–100 tonnes of sulfur per day) to 99% for large plants (1000–4000 tonnes of sulfur per day). The unrecovered sulfur is Incinerated giving rise to relatively small emissions of SO2 characterized by high buoyancy and low momentum.

Using a unique aerial probing methodology, plume dispersion studies were conducted on two plants located fn the foothills of southwestern Alberta, Canada. These studies were generally conducted under neutral conditions and with westerly air flows typical of Chinook conditions. Notable variations of the plume dispersion parameters from accepted predictive values were found, indicating that such values cannot be used with confidence to estimate plume rise and dispersion in the mountain foothills.  相似文献   

16.
Abstract

Landfills represent a source of distributed emissions source over an irregular and heterogeneous surface. In the method termed “Other Test Method-10” (OTM-10), the U.S. Environmental Protection Agency (EPA) has proposed a method to quantify emissions from such sources by the use of vertical radial plume mapping (VRPM) techniques combined with measurement of wind speed to determine the average emission flux per unit area per time from nonpoint sources. In such application, the VRPM is used as a tool to estimate the mass of the gas of interest crossing a vertical plane. This estimation is done by fitting the field-measured concentration spatial data to a Gaussian or some other distribution to define a plume crossing the vertical plane. When this technique is applied to landfill surfaces, the VRPM plane may be within the emitting source area itself. The objective of this study was to investigate uncertainties associated with using OTM-10 for landfills. The spatial variability of emission in the emitting domain can lead to uncertainties of –34 to 190% in the measured flux value when idealistic scenarios were simulated. The level of uncertainty might be higher when the number and locations of emitting sources are not known (typical field conditions). The level of uncertainty can be reduced by improving the layout of the VRPM plane in the field in accordance with an initial survey of the emission patterns. The change in wind direction during an OTM-10 testing setup can introduce an uncertainty of 20% of the measured flux value. This study also provides estimates of the area contributing to flux (ACF) to be used in conjunction with OTM-10 procedures. The estimate of ACF is a function of the atmospheric stability class and has an uncertainty of 10–30%.  相似文献   

17.
Abstract

Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

18.
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid-based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal-fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid-based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid-based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid-based model. If one compares the local impacts for an area that is significantly less than the grid-based model resolution, then the grid-based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid-based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

19.
20.
A new simulation-optimization methodology is developed for cost-effective sampling network design associated with long-term monitoring of large-scale contaminant plumes. The new methodology is similar in concept to the one presented by Reed et al. (Reed, P.M., Minsker, B.S., Valocchi, A.J., 2000a. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resour. Res. 36 (12), 3731-3741) in that an optimization model based on a genetic algorithm is coupled with a flow and transport simulator and a global mass estimator to search for optimal sampling strategies. However, this study introduces the first and second moments of a three-dimensional contaminant plume as new constraints in the optimization formulation, and demonstrates the proposed methodology through a real-world application. The new moment constraints significantly increase the accuracy of the plume interpolated from the sampled data relative to the plume simulated by the transport model. The plume interpolation approaches employed in this study are ordinary kriging (OK) and inverse distance weighting (IDW). The proposed methodology is applied to the monitoring of plume evolution during a pump-and-treat operation at a large field site. It is shown that potential cost savings up to 65.6% may be achieved without any significant loss of accuracy in mass and moment estimations. The IDW-based interpolation method is computationally more efficient than the OK-based method and results in more potential cost savings. However, the OK-based method leads to more accurate mass and moment estimations. A comparison of the sampling designs obtained with and without the moment constraints points to their importance in ensuring a robust long-term monitoring design that is both cost-effective and accurate in mass and moment estimations. Additional analysis demonstrates the sensitivity of the optimal sampling design to the various coefficients included in the objective function of the optimization model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号