首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Laboratory studies on the remediation of mercury contaminated soils   总被引:1,自引:0,他引:1  
Mercury, in contrast to other toxic metals, cycles between the atmosphere, land, and water. During this cycle, it undergoes a series of complex chemical and physical transformations. Because of these transformations, it is found in the environment not only as simple inorganic and organic compounds, but also as complex compounds. As a result, it is difficult to remediate mercury contaminated materials. Laboratory studies were conducted with a mercury contaminated complex waste from an industrial site to evaluate the ability of extractants such as H2O2, H2SO4 and Na2S2O3 to decontaminate the waste. Up to 87 percent of the total mercury present in the waste was extracted. Mercury was recovered as insoluble mercury sulfide by adding Na2S solution to the combined filtrates from the H2O2 + H2SO4 and Na2S2O3 treatment steps. The technique described in this article is capable of recovering mercury in a usable form and can be used as a pretreatment to remediate mercury contaminated waste before laud disposal.  相似文献   

2.
In this paper, emission and distribution behavior of six heavy metals (As, Cd, Cr, Ni, Pb, and Hg), particulate matter and mass distribution of mercury within the different streams of a fluidized bed sewage sludge incinerator are presented. At the inlet of air pollution control devices (APCDs); Cd, Cr, Ni and Pb were mainly enriched in coarse particles; comparatively As content was higher in fine particles (<PM2.5). The concentration of heavy metals in total particulate matter and PM2.5, at the inlet of APCDs, were in the order of Cr > Ni > Pb > As > Cd. Mercury was almost always distributed in flue gas. Metals, other than mercury, were efficiently removed in APCDs and their concentrations in bottom ash, with fly ash being higher, whereas for that in wastewater, then waste sand was lesser. Overall mercury removal efficiency of APCDs was 98.6 %. More than 83.3 % of mercury was speciated into oxidized form at the inlet of APCDs, attributed by higher chlorine content in sludge. Mercury was mainly distributed in wastewater (78.4 %), wastewater from a spray dry reactor (16.8 %), fly ash in a hopper (3.4 %) and flue gas (1.4 %). This result is one of the first for data to be obtained; more experiments are required to control emission from such sources.  相似文献   

3.
As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period.  相似文献   

4.
Elemental mercury, contaminated with radionuclides, presents a waste disposal problem throughout the Department of Energy complex. In this paper we describe a new process to immobilize elemental mercury wastes, including those contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process, elemental mercury is combined with an excess of powdered sulfur polymer cement (SPC) and sulfide additives in a mixing vessel and heated to approximately 40 degrees C for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the temperature of the mixture raised to 135 degrees C, resulting in a molten liquid which is poured into a mold where it cools and solidifies. The final treated waste was characterized by powder X-ray diffraction and found to be a mixture of the hexagonal and orthorhombic forms of mercuric sulfide. The Toxicity Characteristic Leaching Procedure was used to assess mercury releases, which for the optimized process averaged 25.8 microg/l, with some samples being well below the new EPA Universal Treatment Standard of 25 microg/l. Longer term leach tests were also conducted, indicating that the leaching process was dominated by diffusion. Values for the effective diffusion coefficient averaged 7.6x10(-18) cm2/s. Concentrations of mercury vapor from treated waste in equilibrium static headspace tests averaged 0.6 mg/m3.  相似文献   

5.
In a closed landfill, Japan, remedial actions have been undertaken to address the inadequate leachate collection and drainage systems. Part of this process included installing many passive gas vents in the landfill to promote stabilization of landfilled waste. This study focused on the gas velocity in vents by conducting tracer tests to elucidate the gas flow via passive gas vents. The gas composition and gas temperature in the vents was also measured.As the gas vents pass through the waste layer, both landfill gas and air flows through the vents. Therefore, passive gas vents can be used to aerate landfilled waste as well as to collect and release landfill gas. Aerobic biodegradation occurs when air migrates through the waste layer if organic matter is present; this increases the temperature of the waste layer. Inflow of air into the gas vents can occur at a wide range of depths, even 10–20 m below ground level. Air is induced not from the surface of the landfill, but horizontally along the waste layer. The driving force of air induction from outside is a buoyancy effect caused by the temperature rise due to aerobic biodegradation.  相似文献   

6.
Municipal solid waste incinerator (MSWI) bottom ash was allowed to be disposed of with municipal solid waste (MSW) in landfill sites in the recently enacted standard of China. In this study, three sets of simulated landfill reactors, namely, conventional MSW landfill (CL), conventional MSWI bottom ash and MSW co-disposed landfill (CCL), and leachate recirculated MSWI bottom ash and MSW co-disposed landfill (RCL), were operated to investigate the environmental impact of the co-disposal. The effect of leachate recirculation on the migration of Cu and Zn in the co-disposed landfill was also presented. The results showed that the co-disposal of MSWI bottom ash with MSW would not enhance the leaching of Cu and Zn from landfill. However, the co-disposal increased the Cu and Zn contents of the refuse in the bottom layer of the landfill from 56.7 to 65.3 mg/kg and from 210 to 236 mg/kg, respectively. The recirculation of the leachate could further increase the Cu and Zn contents of the refuse in the bottom layer of the landfill to 72.9 and 441 mg/kg, respectively. Besides these observations, the results also showed that the co-disposed landfill with leachate recirculation could facilitate the stabilization of the landfill.  相似文献   

7.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20–30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27° to 30° due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature of sandy soil that was used as daily covers soils. Therefore, the effects of cover soils on the shear strength properties of MSW should be evaluated and taken into consideration during stability analyses and design.  相似文献   

8.
Leachate accumulated at the Nakazono Landfill in Asahikawa, Japan due to an inadequate leachate collection and drainage system. To reduce the level of leachate in the landfill and promote the stabilization of waste, many passive gas vents were installed in addition to leachate collection vaults. This study evaluated the distribution and movement of leachate in the landfill by measuring leachate levels and conducting tracer tests in the gas vents.Water levels varied widely among gas vents and depended mainly on the vent’s original ground level and depth. Leachate velocity varied greatly; it was high in the upper layers of the saturated zone in a gas vent, but this was only a superficial velocity caused by inflow from unsaturated layers. A sharp decrease in total organic carbon observed in most gas vents after installation was likely due to the effect of aerobic biodegradation in the unsaturated waste layer. This effect was limited to a small aerobic zone around the gas vent.  相似文献   

9.
Degradation of municipal solid waste in landfills generates sulfide compounds, which are considered one of the main sources of odor emissions. Field sampling was conducted at surfaces of operating, inoperative, and soil-covered areas of a landfill site in northern China to characterize the sulfide compounds. The results showed that dimethyl disulfide dominated the sulfide compounds, accounting for up to 73.6% of the total detected sulfide. With the biggest odor concentration of 365, diethyl sulfide was the most significant sulfide compound. The estimated sulfide emission rates at surfaces of operating and soil-covered areas were similar, and the emission rate of dimethyl disulfide at Surface of Operating Area was up to 345.9 μg/m3 h. Dimethyl disulfide could be released from the fresh waste, and its normalized concentration at 0.2 m beneath operating surface was 10.4 times that at 0.4 m.  相似文献   

10.
The stability of hazardous waste (HW) landfill is a major security risk to the landfill environmental safety. The mechanical behavior of waste controls many aspects of landfill design and operation, including stability and settlement issues and the integrity of geosynthetic and liner components. This study presents the results of a laboratory experiment to learn the mechanical properties of HW collected from the Hangzhou HW landfill. Measured mechanical behavior was compared with results for municipal solid waste (MSW) to assess their discrepancies. The particle size of HW was analyzed by the sieving and hydrometer methods. Because HW comes primarily from industrial plants in the form of sludge or slag, their particle sizes are generally smaller than those of MSW. This study indicates that the shear strength parameters of HW are more sensitive to the methods of testing and calculation than those of MSW. Numerical simulations demonstrate that the safety factor of a landfill is affected by the mechanical properties of HW, especially cohesion and friction angle. Because of the lower particle size and wider compression ratio, compared to MSW, an HW landfill should be taken more care in its operational procedures so as to increase its stability.  相似文献   

11.
To make a proper evaluation of gas component movement inside a landfill site, it is important to investigate the different parameters related to gas flow. In this work gas-filled porosity, intrinsic permeability, tortuosity and equivalent pore radius were determined for various packed wastes, such as incineration ash, shredded bulky waste and shredded incombustible waste. These parameters were measured/inferred for samples packed in a column and exposed to a controlled gas flow. The effect of waste conditions, especially the moisture content, on these parameters was also investigated. The intrinsic permeability of such packed wastes was generally in the order of 10(-10) to 10(-9) m2, except for some ash that was one to two orders lower. The tortuosity of waste layer was greater than that of a particulate material and ranged between 2 and 10. The equivalent pore radius was generally in the order of 10(-4) m, which means that gas diffusion is still ordinary in such packed waste layer. The obtained results will be utilized when simulating gas flow inside a landfill site for biogas extraction or site aeration.  相似文献   

12.
The paper presents a 1D mathematical model for the simulation of the percolation fluxes throughout a landfill for municipal solid waste (MSW). Specifically, the model was based on mass balance equations, that enable simulation of the formation of perched leachate zones in a landfill for MSW. The model considers the landfill divided in several layers evaluating the inflow to and outflow from each layer as well as the continuous moisture distribution. The infiltration flow was evaluated by means of the Darcy’s law for an unsaturated porous medium, while the moisture distribution evaluation has been carried out on the basis of the theory of the vertically distributed unsaturated flow. The solution of the model has been obtained by means of the finite difference method. The model has been applied to a semi-idealized landfill located in Palermo landfill (Bellolampo). Specifically, field measurements were conducted to determine the relationship between waste density and applied vertical strain. This relationship was then used to relate vertical strain to waste porosity. The inflow rate to the system was simulated via a synthetic hyetograph whose characteristics have been identified in a previous hydrologic study.Three simulations, each with a different initial moisture content, were conducted. The model results showed a different response of the landfill in terms both of flow rates throughout the landfill and moisture profile. Indeed, the initial moisture content drastically influenced not only the formation of perched leachate zones but also their extension. The model can be a useful tool in predicting potential for the formation of perched leachate zones.  相似文献   

13.
Oxygen invasion into old landfills was studied by assuming the installation of gas venting pipes to promote stabilization of waste. In an experiment using a column pack with old incombustible waste, oxygen intrusion was observed and the oxygen consumption rate was estimated. Oxygen diffused into the waste layer very quickly in the initial stage of the experiment, but oxygen concentration increased only gradually due to reduced gradient and decreasing oxygen consumption. The maximum oxygen consumption rate in packed waste was one-third of that in loosely deposited waste in a beaker measured in a respiration test. A mathematical model was created which fitted the experimental data well and a three-dimensional simulation of a full-scale landfill and a sensitivity analysis were performed.  相似文献   

14.
Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill.With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill.  相似文献   

15.
A methodology for estimating the methane emissions from waste landfills in Hanoi, Vietnam, as part of a case study on Asian cities, was derived based on a survey of documents and statistics related to waste management, interviews with persons in charge, and field investigations at landfill sites. The waste management system in Hanoi was analyzed to evaluate the methane emissions from waste landfill sites. The quantity of waste deposited into the landfill was evaluated from an investigation of the waste stream. The composition of municipal waste was surveyed in several districts in the Hanoi city area, and the quantities of degradable organic waste that had been deposited into landfill for the past 15 years were estimated. Field surveys on methane emissions from landfills of different ages (0.5, 2, and 8 years) were conducted and their methane emissions were estimated to be 120, 22.5, and 4.38 ml/min/m2, respectively. The first-order reaction rate of methane generation was obtained as 0.51/year. Methane emissions from waste landfills were calculated by a first-order decay model using this emission factor and the amount of landfilled degradable waste. The estimates of methane emissions using the model accorded well with the estimates of the field survey. These results revealed that methane emissions from waste landfills estimated by regional-specific and precise information on the waste stream are essential for accurately determining the behavior of methane emissions from waste landfills in the past, present, and future.  相似文献   

16.
17.
The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.  相似文献   

18.
Mercury occurs naturally in the environment and can be found in elemental (metallic), inorganic, and organic forms. Modern uses for mercury include chemical manufacturing, thermometers, and lighting (mercury vapor and fluorescent lamps). The chemical and allied products industry group is responsible for the largest quantity of mercury used in the United States. Mercury, particularly the organic methylmercury form, is a potent neurotoxin capable of impairing neurological development in fetuses and young children and of damaging the central nervous system of adults. Mercury regulations span multiple federal and state environmental statutes, as well as multiple agency jurisdictions. In August 2007, the U.S. Environmental Protection Agency's (US EPA's) Office of Superfund Remediation and Technology Innovation (OSRTI) published a report titled “Treatment Technologies for Mercury in Soil, Waste, and Water.“ The report identifies eight treatment technologies and 57 projects, 50 of which provide performance data. This information can help managers at sites with mercury‐contaminated media and generators of mercury‐contaminated waste and wastewater to identify proven and effective mercury treatment technologies; screen technologies based on application‐specific goals, characteristics, and costs; and apply experiences from sites with similar treatment challenges. This article provides a synopsis of the US EPA report, which is available at http://clu‐in.org/542R07003 . © 2007 Wiley Periodicals, Inc. *
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    19.
    Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the landfill.  相似文献   

    20.
    Due to their broad industrial production and use as PVC-stabilisers, agro-chemicals and anti-fouling agents, organo-metal compounds are widely distributed throughout the terrestrial and marine biogeosphere. Here, we focused on the emission dynamics of various organo-metal compounds (e.g., di,- tri-, tetra-methyl tin, di-methyl mercury, tetra-methyl lead) from two different kinds of pre-treated mass waste, namely mechanically-biologically pre-treated municipal solid waste (MBP MSW) and municipal waste incineration ash (MWIA). In landfill simulation reactors, the emission of the organo-metal compounds via the leachate and gas pathway was observed over a period of 5 months simulating different environmental conditions (anaerobic with underlying soil layer/aerated/anaerobic). Both waste materials differ significantly in their initial amounts of organo-metal compounds and their environmental behaviour with regard to the accumulation and depletion rates within the solid material during incubation. For tri-methyl tin, the highest release rates in leachates were found in the incineration ash treatments, where anaerobic conditions in combination with underlying soil material significantly promoted its formation. Concerning the gas pathway, anaerobic conditions considerably favour the emission of organo-metal compounds (tetra-methyl tin, di-methyl mercury, tetra-methyl lead) in both the MBP material and especially in the incineration ash.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号