首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.  相似文献   

2.
While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derived to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.  相似文献   

3.
Ever since Taiwan’s National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.  相似文献   

4.
Biomedical solid waste management in an Indian hospital: a case study   总被引:1,自引:0,他引:1  
The objectives of this study were: (i) to assess the waste handling and treatment system of hospital bio-medical solid waste and its mandatory compliance with Regulatory Notifications for Bio-medical Waste (Management and Handling) Rules, 1998, under the Environment (Protection Act 1986), Ministry of Environment and Forestry, Govt. of India, at the chosen KLE Society's J. N. Hospital and Medical Research Center, Belgaum, India and (ii) to quantitatively estimate the amount of non-infectious and infectious waste generated in different wards/sections. During the study, it was observed that: (i) the personnel working under the occupier (who has control over the institution to take all steps to ensure biomedical waste is handled without any adverse effects to human health and the environment) were trained to take adequate precautionary measures in handling these bio-hazardous waste materials, (ii) the process of segregation, collection, transport, storage and final disposal of infectious waste was done in compliance with the Standard Procedures, (iii) the final disposal was by incineration in accordance to EPA Rules 1998, (iv) the non-infectious waste was collected separately in different containers and treated as general waste, and (v) on an average about 520 kg of non-infectious and 101 kg of infectious waste is generated per day (about 2.31 kg per day per bed, gross weight comprising both infectious and non-infectious waste). This hospital also extends its facility to the neighboring clinics and hospitals by treating their produced waste for incineration.  相似文献   

5.
Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.  相似文献   

6.
Healthcare waste management is a serious public health concern. In developing countries, compared to developed nations, the management of infectious wastes has not received sufficient attention. Recently, worldwide awareness has grown of the need to impose stricter controls on the handling and disposal of wastes generated by healthcare facilities. This exploratory study attempted in seven selected hospitals to explain the situation of healthcare waste management, with a focus on handling practices, occupational safety, and the implementation status of waste management policy, together with other pertinent policy issues. It was noted that the current system of healthcare waste management was underdeveloped and was in dire need of immediate attention and improvement, especially in Mongolia and Pakistan; the medical waste management practices were better in the hospitals studied in Thailand. This study underscores the importance for improvement of medical waste management of a national regulatory framework, a sound internal management system, and programs to train and ensure the safety of related personnel, as well as programs to estimate quantities of waste generated and to evaluate appropriate techniques of disposal. Once a healthcare waste management plan has been prepared, a regular program of inspection and review can be undertaken within the healthcare institution. A good inspection program can also expose problems and new issues in managing healthcare wastes.  相似文献   

7.
Medical waste production at hospitals and associated factors   总被引:2,自引:0,他引:2  
This study was conducted to evaluate the quantities of medical waste generated and the factors associated with the generation rate at medical establishments in Taiwan. Data on medical waste generation at 150 health care establishments were collected for analysis in 2003. General medical waste and infectious waste production at these establishments were examined statistically with the potential associated factors. These factors included the types of hospital and clinic, reimbursement payment by National Health Insurance, total number of beds, bed occupancy, number of infectious disease beds and outpatients per day. The average waste generation rates ranged from 2.41 to 3.26kg/bed/day for general medical wastes, and 0.19-0.88kg/bed/day for infectious wastes. The total average quantity of infectious wastes generated was the highest from medical centers, or 3.8 times higher than that from regional hospitals (267.8 vs. 70.3Tons/yr). The multivariate regression analysis was able to explain 92% of infectious wastes and 64% of general medical wastes, with the amount of insurance reimbursement and number of beds as significant prediction factors. This study suggests that large hospitals are the major source of medical waste in Taiwan. The fractions of medical waste treated as infectious at all levels of healthcare establishments are much greater than that recommended by the USCDC guidelines.  相似文献   

8.
Hospital waste management and toxicity evaluation: a case study   总被引:1,自引:0,他引:1  
Hospital waste management is an imperative environmental and public safety issue, due to the waste's infectious and hazardous character. This paper examines the existing waste strategy of a typical hospital in Greece with a bed capacity of 400-600. The segregation, collection, packaging, storage, transportation and disposal of waste were monitored and the observed problematic areas documented. The concentrations of BOD, COD and heavy metals were measured in the wastewater the hospital generated. The wastewater's toxicity was also investigated. During the study, omissions and negligence were observed at every stage of the waste management system, particularly with regard to the treatment of infectious waste. Inappropriate collection and transportation procedures for infectious waste, which jeopardized the safety of staff and patients, were recorded. However, inappropriate segregation practices were the dominant problem, which led to increased quantities of generated infectious waste and hence higher costs for their disposal. Infectious waste production was estimated using two different methods: one by weighing the incinerated waste (880 kg day(-1)) and the other by estimating the number of waste bags produced each day (650 kg day(-1)). Furthermore, measurements of the EC(50) parameter in wastewater samples revealed an increased toxicity in all samples. In addition, hazardous organic compounds were detected in wastewater samples using a gas chromatograph/mass spectrograph. Proposals recommending the application of a comprehensive hospital waste management system are presented that will ensure that any potential risks hospital wastes pose to public health and to the environment are minimized.  相似文献   

9.
If there are no clearly defined management procedures, medical waste may represent a source of serious health hazards. Medical waste management was evaluated at the three hospitals in the Nisava and Toplica district, in Serbia. All the stages of existing waste management (segregation, collection, storage, transportation and disposal of waste) were examined by interviewing the personnel involved in the management of waste. The generated waste was a mixture of hazardous and non-hazardous waste. The study found that waste management performance in this district was poor and that there were problems in every stage of management. The results indicate that the waste generation rate was 1.92 kg bed(-1) day(-1) and consisted of 98.7% general waste and 1.3% sharps. Inappropriate segregation practices were the biggest problem and led to increased quantities of general waste. There were no specific regulations for the segregation of the medical waste. None of the surveyed hospitals have a system to refine wastewater and there were no training courses about hospital waste management.  相似文献   

10.
Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed(-1)d(-1), using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed(-1)d(-1), for the public psychiatric hospitals, to up to 0.72 kg bed(-1)d(-1), for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed(-1)d(-1), for the psychiatric clinics, to up to 0.49 kg bed(-1)d(-1), for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.  相似文献   

11.
This study investigated the medical waste management practices used by hospitals in northern Jordan. A comprehensive inspection survey was conducted for all 21 hospitals located in the study area. Field visits were conducted to provide information on the different medical waste management aspects. The results reported here focus on the level of medical waste segregation, treatment and disposal options practiced in the study area hospitals. The total number of beds in the hospitals was 2296, and the anticipated quantity of medical waste generated by these hospitals was about 1400 kg/day. The most frequently used treatment practice for solid medical waste was incineration. Of these hospitals, only 48% had incinerators, and none of these incinerators met the Ministry of Health (MoH) regulations. As for the liquid medical waste, the survey results indicated that 57% of surveyed hospitals were discharging it into the municipal sewer system, while the remaining hospitals were collecting their liquid waste in septic tanks. The results indicated that the medical waste generation rate ranges from approximately 0.5 to 2.2 kg/bed day, which is comprised of 90% of infectious waste and 10% sharps. The results also showed that segregation of various medical waste types in the hospitals has not been conducted properly. The study revealed the need for training and capacity building programs of all employees involved in the medical waste management.  相似文献   

12.
Hospital waste management is an important process that must be dealt with diligently. The management of hazardous waste material requires specific knowledge and regulations and it must be carried out by specialists in the field. In this cross-sectional study, we assessed the main stages of hospital waste management including separation, containment, removal and disposal of waste materials in public hospitals affiliated with Tehran University of Medical Sciences (TUMS). We selected 108 units of six hospitals (three general hospitals and three subspecialty hospitals) from those hospitals supervised by TUMS using the cluster sampling method. The measurement was conducted through a questionnaire and direct observation by researchers. Association analysis was done by statistical tests; Fisher exact test and chi-squared using SPSS software. According to the results obtained by the questionnaire, most of the studied wards scored moderately in terms of quality of their performance in all stages of waste management. About one-fifth of the wards were suffering from poor management of their medical waste and only a minority of wards obtained good scores for managing their waste materials. The findings also revealed significant associations between temporary waste storage and collection and the level of education of the managers (P = 0.040, P = 0.050, respectively). In summary, the study indicated a moderate management in all processes of separation, collection, containment, removal and disposal of waste materials in hospitals with several observed problems in the process.  相似文献   

13.
A system dynamics approach for hospital waste management   总被引:2,自引:0,他引:2  
Healthcare services provided by hospitals may generate some infectious wastes. Although a large percentage of hospital waste is classified as general waste, which has similar nature as that of municipal solid waste and, therefore, could be disposed in municipal landfills, a small portion of infectious waste has to be managed in the proper manner in order to minimize risk to public health. Many factors involved in the hospital waste management system often link to one another, which require a comprehensive analysis to determine the role of each factor in the system. In this paper, we present a hospital waste management model based on system dynamics to determine the interaction among factors in the system using a software package, Stella. A case study of the City of Jakarta, Indonesia is selected. The hospital waste generation is affected by various factors including the number of beds in the hospitals and the NIMBY (not in my back yard) syndrome. To minimize the risk to public health, we found that waste segregation, as well as infectious waste treatment prior to disposal, has to be conducted properly by the hospital management, especially when scavenging takes place in landfill sites in developing countries.  相似文献   

14.
Medical waste management is of great importance due to its infectious and hazardous nature that can cause undesirable effects on humans and the environment. The objective of this study was to analyze and evaluate the present status of medical waste management in the light of medical waste control regulations in Nanjing. A comprehensive inspection survey was conducted for 15 hospitals, 3 disposal companies and 200 patients. Field visits and a questionnaire survey method were implemented to collect information regarding different medical waste management aspects, including medical waste generation, segregation and collection, storage, training and education, transportation, disposal, and public awareness.The results indicated that the medical waste generation rate ranges from 0.5 to 0.8 kg/bed day with a weighted average of 0.68 kg/bed day. The segregated collection of various types of medical waste has been conducted in 73% of the hospitals, but 20% of the hospitals still use unqualified staff for medical waste collection, and 93.3% of the hospitals have temporary storage areas. Additionally, 93.3% of the hospitals have provided training for staff; however, only 20% of the hospitals have ongoing training and education. It was found that the centralized disposal system has been constructed based on incineration technology, and the disposal cost of medical waste is about 580 US$/ton. The results also suggested that there is not sufficient public understanding of medical waste management, and 77% of respondents think medical waste management is an important factor in selecting hospital services.The problematic areas of medical waste management in Nanjing are addressed by proposing some recommendations that will ensure that potential health and environmental risks of medical waste are minimized.  相似文献   

15.
In Libya, as in many developing countries, little information is available regarding generation, handling and disposal of hospital waste. This fact hinders the development and implementation of hospital waste management schemes. The specific objective of this study is to present an appraisal of the current situation regarding hospital waste management in Libya. Procedures, techniques, methods of handling, and disposal of waste are presented, as well as the amounts and compositions of hospital waste. This research was conducted in the form of a case study. Fourteen different healthcare facilities in three cities, Tripoli, Misurata, and Sirt, all located in the northwestern part of Libya, were selected for investigation. The investigation showed that the hospitals surveyed had neither guidelines for separated collection and classification, nor methods for storage and disposal of generated waste. This deficiency indicates the need for an adequate hospital waste management strategy to improve and control the existing situation. The average waste generation rate was found to be 1.3 kg/patient/day, comprised of 72% general healthcare waste (non-risk) and 28% hazardous waste. The average general waste composition was: 38% organic, 24% plastics, and 20% paper. Sharps and pathological elements comprised 26% of the hazardous waste component.  相似文献   

16.
In India, a few studies have been conducted for analyzing the generation rates and composition of medical waste (MW). Inadequate information about the amount and composition of MW results in ineffective management practices. The present study seeks to evaluate healthcare waste (HCW) generation rates by healthcare facilities (HCFs) available in Uttarakhand, a northern state of India. Study also focuses on modeling the quantity of different types of MW generated at various HCFs and determining significant factors contributing towards MW generation. Seasonal variation in amount of MW generated from various HCFs has also been considered. To achieve these objectives, cross-sectional as well as longitudinal data have been collected from various HCFs in Uttarakhand, India. The survey revealed that around 36% of the total HCFs did not segregate their MW as per policy guidelines. Cross-sectional data for May 2015 were collected from 75 HCFs to analyze and model the composition and quantity of HCW generated. Multiple Linear Regression and Artificial Neural Network techniques were applied to model cross-sectional data. In the composition of the overall MW, ‘yellow waste’ carries the maximum share, followed by ‘red waste’ and then the ‘blue waste’. In addition, the ‘type of HCF’ and ‘bed occupancy’ have been modeled as the important factors, contributing towards the MW generations rates. Longitudinal data for 2 years (2013 and 2014) were collected to examine seasonal variation in HCW generation rates using polynomial regression analysis. Result shows that MW quantity also varies with the change in the season. Findings of the study will help hospitals and waste treatment facilities to predict amount of waste that may be generated, and plan resources towards efficient handling and disposal of MW.  相似文献   

17.
BackgroundHealthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75–90% of these wastes are classified as household waste posing no potential risk, 10–25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran.Materials and methodsNamazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period.ResultsBefore the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste.ConclusionA structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings.  相似文献   

18.
This study investigated the type and amount of medical waste generated from small clinical facilities in Taiwan. We sampled 200 small medical establishments, with few or no patient beds, to survey the wastes generated and disposed. The surveyed medical facilities consisted of four groups including private clinics, medical laboratories, blood centers and public clinics. Private clinics providing surgical, dental, obstetrical, and dialysis services were included in this survey because they may generate higher amounts of infectious waste than other specialties. The overall mean general waste production rate was 3.97 kg/bed/day (or 0.075 kg/patient/day) at all the surveyed facilities, higher than that obtained from larger hospitals in Taiwan, which ranged from 2.41 to 3.26 kg/bed/day. The highest amount of infectious wastes generated among the four groups of facilities were from blood centers (3.14 kg/bed/day), followed by private clinics, medical laboratories and public clinics (1.91, 1.07, and 0.053 kg/bed/day, respectively). The overall average was 2.08 kg/bed/day. This study suggests that the waste generated at small medical facilities ranged widely.  相似文献   

19.
The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This article summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.  相似文献   

20.
In China, national regulations and standards for health care waste management were implemented in 2003. To investigate the current status of health care waste management at different levels of health care facilities (HCF) after the implementation of these regulations, one tertiary hospital, one secondary hospital, and four primary health care centers from Binzhou District were visited and 145 medical staff members and 24 cleaning personnel were interviewed.Generated medical waste totaled 1.22, 0.77, and 1.17 kg/bed/day in tertiary, secondary, and primary HCF, respectively. The amount of medical waste generated in primary health care centers was much higher than that in secondary hospitals, which may be attributed to general waste being mixed with medical waste. This study found that the level of the HCF, responsibility for medical waste management in departments and wards, educational background and training experience can be factors that determine medical staff members’ knowledge of health care waste management policy. Regular training programs and sufficient provision of protective measures are urgently needed to improve occupational safety for cleaning personnel. Financing and administrative monitoring by local authorities is needed to improve handling practices and the implementation of off-site centralized disposal in primary health care centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号