共查询到20条相似文献,搜索用时 0 毫秒
1.
Canet R Pomares F Cabot B Chaves C Ferrer E Ribó M Albiach MA 《Waste management (New York, N.Y.)》2008,28(12):2585-2592
The costly disposal of the semisolid residual pomace generated in the two phase extraction used in modern olive mills is causing serious problems to the small oil producers of rural southeastern Spain. Composting may be a viable alternative since complementary residues are usually available in these areas to prepare an adequate starting mixture. In this work, four different combinations of residues (pomace+rabbit manure, pomace+sheep manure, pomace+rabbit manure+rice straw, pomace+rabbit manure+almond shells) were composted in 3 ton piles aerated by turnings, using technology available to any small community of oil producers. During the four long processes (9-10 months), a steady decrease of organic matter and increases in the concentrations of nutrient and humic substances were observed, together with large increases in pH and salinity which may reduce the agronomic value of the final products. 相似文献
2.
Antonia Fernández-Hernández Asunción Roig Nuria Serramiá Concepción García-Ortiz Civantos Miguel A. Sánchez-Monedero 《Waste management (New York, N.Y.)》2014,34(7):1139-1147
Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical “Picual” olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil. 相似文献
3.
Issaoui Wissal Aydi Abdelwaheb Mahmoudi Marwa Cilek Muge Unal Abichou Tarek 《Journal of Material Cycles and Waste Management》2021,23(4):1490-1502
Journal of Material Cycles and Waste Management - The installation of an olive mill wastewater (OMW) disposal site without well-defined standards and constraints may cause undesirable long-term... 相似文献
4.
5.
In order to study the suitability of composting olive mill wastewater (OMW-L) by repeated applications, OMW-L was added to one mixture of lawn trimmings and olive husks as bulking agents. The composting process of this mixture was compared with another pile having 35% of olive mill wastewater sludge (OMW-S) obtained from evaporation ponds and a third, as a control, without olive mill wastewater. The repeated applications of OMW-L resulted in a sharp decrease in respiration measurements after the first 20 days of composting and showed a re-increase after 40 days following the substituting of OMW-L by water. The OMW-L addition increased the rate of water-soluble phenols in the compost and caused the appearance of a phenol fraction of high molecular-mass (510 kDa) at the end of composting. OMW-L addition also caused a clear decrease in both thermophilic bacteria and thermophilic eumycete counts. A longer persistence of phytotoxicity was observed in comparison with the other piles. However, the OMW-S produced a compost with a high degree of maturity. 相似文献
6.
Sánchez-Monedero MA Cayuela ML Mondini C Serramiá N Roig A 《Waste management (New York, N.Y.)》2008,28(4):767-773
The present work deals with the potential of olive mill wastes as a C source for soil C sequestration strategy, which is based on the high lignocellulosic content that makes these wastes to degrade slowly during composting and after land application. A C balance was performed during the whole life cycle of two different two-phase olive mill wastes (TPOMW): C losses were calculated during the composting process and after soil application of the composting mixtures under laboratory conditions. The effect of the degree of stabilization of TPOMW on the overall C waste conservation efficiency was also evaluated. C losses after 34 weeks of TPOMW composting ranged from 40.58% to 45.19% of the initial C, whereas the amount of C evolved as CO2 after 8 months of incubation of soil amended with mature composts only represented between 20.6% and 21.9% of the added C. The total C losses considering the whole life cycle of the TPOMW showed lower losses compared to composts prepared with organic residues of different origin. Conversely to the typical behaviour of other organic wastes, the stabilisation degree of the TPOMW composting mixtures did not show any significant effect on the total C losses measured during composting and later land application. The low rate of degradation of TPOMW both during composting and after soil application makes the use of TPOMW as a C source an attractive strategy for soil C sequestration. 相似文献
7.
Quality assessment of composts prepared with olive mill wastewater and agricultural wastes 总被引:1,自引:0,他引:1
Hachicha S Sallemi F Medhioub K Hachicha R Ammar E 《Waste management (New York, N.Y.)》2008,28(12):2593-2603
The co-composting of solid residue from olive oil production process, exhausted olive cake (EOC), with poultry manure (PM) watered with olive mill wastewater (OMW) was considered as an efficient method for the treatment of olive oil extraction effluent having high organic content including phenolic polluting compounds. The process was carried out by using three aerated windrows of variable compositions. OMW was used continuously during the bio-oxidative period, which lasted three months, to replace water for windrow moistening. The main process parameters (temperature, pH, humidity and C/N) were monitored over four months to ascertain the maturity of the compost. The composting process lasted four months during which 26 moistenings of the mixtures were performed with OMW or water to keep moisture within the ideal range of 45-60% (w/w). At the maturity stage, the C/N ratios were less than 16, pH of the resulting products were slightly alkaline (pH=8) and electrical conductivity was relatively high in the OMW mixtures (5.46-5.48 Sm(-1)) when compared with water application. Nitrates increased (0.16-0.42%) and phenol contents were reduced by more than 49%. Mature composts were then used as an amendment for potato production in a field where no inhibitory effect was observed. Potato productivity increased 10-23% as a result of compost application. No noticeable negative impact of OMW on the soil system was observed. Phenolic compound concentrations in the stabilised composts were comparable in the three studied mixtures (different sites) and averaged 0.24%. Considering previous results and this three year study, it has been observed that the benefit of these composts demonstrated the potential sustainable agronomic production of potato while using locally available recycled organic materials. 相似文献
8.
M. Taccari M. Stringini F. Comitini M. Ciani 《Waste management (New York, N.Y.)》2009,29(5):1615-1621
The co-composting of olive mill wastewater with a variety of agricultural wastes was investigated. To reduce the toxicity of the phenolic fraction and to improve the degree of maturity of the compost, inoculation with the white-rot fungus Phanerochaete chrysosporium was carried out during the maturation phase. The results showed that agricultural wastes that contain high levels of lignin-related compounds, such as the residue from trimmings, improved the microbial activity and thus reduced the soluble phenols residue. The inoculation of P. chrysosporium during compost maturation reduced and modified the phenolic fraction, allowing a reduction in the time to reach compost maturity with the improvement in the germination index of 100% after 36 days in two of three trials performed. 相似文献
9.
Olive mill wastes represent an important environmental problem in Mediterranean areas where they are generated in huge quantities in short periods of time. Their high phenol, lipid and organic acid concentrations turn them into phytotoxic materials, but these wastes also contain valuable resources such as a large proportion of organic matter and a wide range of nutrients that could be recycled. In this article, recent research studies for the valorisation of olive mill wastes performed by several authors were reviewed: second oil extraction, combustion, gasification, anaerobic digestion, composting and solid fermentation are some of the methods proposed. Special attention was paid to the new solid waste generated during the extraction of olive oil by the two-phase system. The peculiar physicochemical properties of the new solid waste, called two-phase olive mill waste, caused specific management problems in the olive mills that have led to the adaptation and transformation of the traditional valorisation strategies. The selection of the most suitable or appropriate valorisation strategy will depend on the social, agricultural or industrial environment of the olive mill. Although some methods are strongly consolidated in this sector, other options, more respectful with the environment, should also be considered. 相似文献
10.
Zaw Aye Cho Cho Gathuka Lincoln W. Takai Atsushi Katsumi Takeshi 《Journal of Material Cycles and Waste Management》2022,24(4):1423-1431
Journal of Material Cycles and Waste Management - Dredged soils are typically mixed with additives to improve their mechanical properties and reduce the risks of leaching toxic elements. An... 相似文献
11.
Galiatsatou P Metaxas M Arapoglou D Kasselouri-Rigopoulou V 《Waste management (New York, N.Y.)》2002,22(7):803-812
A series of activated carbons prepared by a two-step steam activation of olive stone and solvent extracted olive pulp (SEOP) have been used in an attempt to investigate the total phenol removal and chemical oxygen demand (COD) decrease in olive mill waste water (OMWW). The temperature of carbonization and activation were kept constant at 850 and 800 degrees C, respectively. One of the carbons was prepared by a single-step process at 800 degrees C. Activated carbons have been characterized by adsorption of N2 at 77 K and mercury porosimetry. Their iodine values were also determined. Surface oxides of activated carbons were determined using the Boehm's method. The porosity development and the surface chemistry of carbons were correlated to increasing removal ability of organic molecules. Kinetics of adsorption was evaluated by applying the Lagegren model while adsorption isotherm data were fitted to Langmuir model. Mesoporosity seems to be the key factor for total phenol removal while micoporosity controls the adsorption of total organics as expressed by the COD decrease in OMWW. For carbons with similar structure, the adsorption of phenols or total organics might be affected by the presence of carbonyls. 相似文献
12.
The effects of sewage sludge (SL) application on the soil and olive trees (Olea europaea L., cultivar: cornicabra) were studied. The plants were grown in 8.5L pots and subjected to the following treatments: 0, 3.66, 7.32, 14.65, 29.3, 58.6, and 117.2 g SL kg(-1) soil that corresponded, respectively, to 0, 4, 8, 16, 32, 64 and 128 M g ha(-1) dry weight of sewage sludge. The application of SL at the rates 64 and 128 M g ha(-1) produced leaf tip burning and leaf drop after 120 days, although cumulative metal pollutant loading rates was below USEPA and European regulations. This toxicity symptom could be caused by the high sodium levels in the leaves (over 0.19%), which can damage olive tree development. The Na contents of leaves were well correlated with soil Na content (r2: 0.91). In general, SL rates significantly increased the level of Cr, Ni, Cu, Zn, Cd and Pb in soil and plants, but these concentrations were in the normal ranges, except for the Zn concentration, which was over the critical soil content for the rates of 32, 64, 128 Mg ha(-1) but not in the leaves. Results suggested that regulations about the utilization of sewage sludge on agricultural land should consider the limit values for salt, and not only metals, that may be added to soil, in order to minimize the risk of negative effects to plant health. 相似文献
13.
14.
Methane and carbon dioxide emission in a two-phase olive oil mill sludge windrow pile during composting 总被引:1,自引:0,他引:1
Manios T Maniadakis K Boutzakis P Naziridis Y Lasaridi K Markakis G Stentiford EI 《Waste management (New York, N.Y.)》2007,27(9):1092-1098
The aim of this work was to make some preliminary evaluations on CO(2) and CH(4) emissions during composting of two-phase olive oil mill sludge (OOMS). OOMS, olive tree leaves (OTL) and shredded olive tree branches (OTB) were used as feedstock for Pile I and Pile II with a 1:1:1 and 1:1:2v/v ratio, respectively. Each pile was originally 1.2m high, 2.0m wide and approximately 15.0m long. Four 500 ml volume glass funnels were inverted and introduced in each pile, two in the core (buried 50-60 cm from the surface) and two near the surface under a thin 10-15 cm layer of the mixture. Thin (0.5 cm diameter) plastic, 80 cm long tubes were connected to the funnels. A mobile gas analyser (GA2000) was used to measure the composition (by volume) of O2, CO2 and CH4 on a daily basis. The funnels were removed prior to each turning and reinserted afterwards. From each pair of funnels (core and surface) of both piles, one was kept closed between samplings. Two way ANOVA was used to test differences between piles and among the tubes. Post hoc Tukey tests were also used to further investigate these differences. There was a significant difference (at p<0.001) in the two piles for all three gases. The average concentrations of O2, CO2 and CH4 in Pile I, from all four funnels was 16.86%, 3.89% and 0.25%, respectively, where for Pile II the average values were 18.07%, 2.38% and 0.04%, respectively. The presence of OOMS in larger amounts in Pile I (resulting in more intense decomposing phenomena), and the larger particle size of OTB in Pile II (resulting in increasing porosity) are the probable causes of these significant differences. Samples from open funnels presented lower, but not significantly lower, O2 composition (higher for CO2 and CH4) in comparison with closed funnels in both depths and both piles. Not significant were also the different mean gas compositions between core and surface funnels in the same pile. 相似文献
15.
Slow pyrolysis of olive mill solid residues as a sustainable valorization strategy for waste biomass
Piscitelli Lea Rasse Daniel P. Malerba Anna Daniela Miano Teodoro Mondelli Donato 《Journal of Material Cycles and Waste Management》2023,25(3):1688-1698
Journal of Material Cycles and Waste Management - Pyrolysis is a valid thermos-chemical process of energy production that produces biochar from potentially harmful biomasses. This study aims to... 相似文献
16.
Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue 总被引:3,自引:0,他引:3
Rincón B Sánchez E Raposo F Borja R Travieso L Martín MA Martín A 《Waste management (New York, N.Y.)》2008,28(5):870-877
A study of the effect of the organic loading rate (OLR) on the anaerobic acidogenic fermentation of two-phase olive mill solid residue (OMSR) derived from fruits with a low ripening index was carried out in a laboratory-scale completely stirred tank reactor at mesophilic temperature (35 degrees C). Eight experimental runs were carried out at OLRs of 3.2, 5.6, 7.4, 9.6, 11.0, 12.9, 14.0 and 15.1g T-COD/ld, which were equivalent to hydraulic retention times of 50.0, 28.8, 21.8, 16.9, 14.7, 12.4, 11.5 and 10.7d, respectively. The experimental results obtained demonstrated that the optimum value of OLR for the acidogenic fermentation process was 12.9 g T-COD/ld, for which a maximum production of acetic acid was achieved. It was found that inhibition of the process occurred at OLRs higher than 12.9 g T-COD/ld. This was characterized by a significant decrease in the acetic acid concentration in the effluent and an increase in the concentration of other volatile acids that may affect the methanogenic step. The process inhibition was also characterized by the plateau in the curves of the effluent substrate concentration versus the OLR applied. It was found that a first-order kinetics satisfactorily described the influence of non-acetic acid soluble organic matter concentration (S-COD( *)) on the rate of soluble organic matter conversion to acetic acid (R(S-COD)( *)), and the influence of acetic acid concentration (AcH) on the rate of acetic acid production (R(AcH)), while a potential equation type adequately described the influence of acetic acid concentration on the volumetric hydrogen production (R(ACH) ). The kinetic constant for soluble organic matter removal was 0.145 d(-1), while the constant for acetic acid formation was found to be 0.075 d(-1). 相似文献
17.
Arulrajah A Disfani MM Suthagaran V Imteaz M 《Waste management (New York, N.Y.)》2011,31(12):2522-2526
The select chemical and engineering characteristics of biosolids produced at a wastewater treatment plant in Eastern Australia were investigated to assess its suitability as structural fill material in road embankments. Results of comprehensive set of geotechnical experimentation including compaction, consolidation, creep, hydraulic conductivity and shear strength tests implied that biosolids demonstrate behavior similar to highly organic clays with a higher potential for consolidation and settlement. Results of chemical study including heavy metals, dichloro diphenyl trichloroethane (and derivatives) and organochlorine pesticides, indicate that biosolids samples are within the acceptable limits which allows their usage under certain guidelines. Results of tests on pathogens (bacteria, viruses or parasites) also indicated that biosolids were within the safe acceptable limits. Technical and management suggestions have been provided to minimize the possible environmental risks of using biosolids in road embankment fills. 相似文献
18.
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are mutagenic, carcinogenic, and toxic to living organisms. Here, the ability and effectiveness of selected bacteria isolated from an oil‐contaminated area in biodegrading PAHs were evaluated, and the optimal conditions conducive to bacterial PAH biodegradation were determined. Of six bacterial isolates identified based on their 16S rRNA sequences, Planomicrobium alkanoclasticum could subsist on and consume nearly all hydrocarbons according to the 2,6‐dichlorophenolindophenol assay. The efficacy of this isolate at PAH biodegradation was then empirically confirmed. After 30 days of incubation, P. alkanoclasticum degraded 90.8% of the 16 PAH compounds analyzed and fully degraded eight of them. The optimum P. alkanoclasticum growth conditions were 35°C, pH 7.5, and NaNO3 as the nitrogen source. Under these biostimulant conditions, P. alkanoclasticum degraded 91.4% of the total PAH concentration and completely decomposed seven PAHs after 15 days incubation. Hence, P. alkanoclasticum is an apt candidate for the biodegradation of PAHs and the bioremediation of sites contaminated by them. 相似文献
19.
Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials 总被引:1,自引:0,他引:1
Oyster shell, a byproduct of shellfish-farming in Korea and containing a high amount of CaCO(3), has a high potential to be used as a liming material in agriculture. However, the agricultural utilization of oyster shell is limited due to its high concentration NaCl. The oyster-shell meal collected had a low concentration of water soluble NaCl (mean 2.7 g kg(-1)), which might be a result of stacking the material for 6 months in the open field. It has a very similar liming potential with calcium carbonate, with 3.4 and 3.8 Mg ha(-1) for silt loam (SiL, pH 6.2) and sandy loam (SL, pH 5.8) to bring the soil pH to 6.5, respectively. To determine the effect of crushed oyster-shell meal on improving soil chemical and biological properties and crop plant productivity, oyster-shell meal was applied at rates of 0, 4, 8, 12, and 16 Mg ha(-1) before transplanting Chinese cabbage (Brassica campestris L.) in the two soils mentioned above. Soil pH was significantly increased to 6.9 and 7.4 by 16 Mg ha(-1) shell meal application (4 times higher level than the recommendation) in SiL and SL, respectively, at harvesting stage. The effect of liming was found higher in SL compared to SiL soil, probably due to the different buffering capacity of the two soils. The concentration of NaCl and EC value of soils were found slightly increased with shell meal applications, but no salt damage was observed. Oyster-shell meal application increased soil organic matter, available P, and exchangeable cations concentrations. The improved soil pH and nutrient status significantly increased the microbial biomass C and N concentrations and stimulated soil enzyme activities. With the exception of acid phosphomonoesterase (PMEase) activity, which decreased with increasing soil pH in SL but slightly increased in SiL, the activities of urease and alkali PMEase increased markedly with increasing soil pH by shell meal application. The improved soil chemical and biological properties resulted in increased crop productivity. The highest yield in Chinese cabbage was achieved following the application of 8 Mg ha(-1) oyster-shell meal. Conclusively, crushed oyster shell could be used as an alternative liming material to restore the soil chemical and microbial properties in upland soil and to increase crop productivity. 相似文献
20.
Francisco J. Fernández Virginia Sánchez-Arias Lourdes Rodríguez José Villaseñor 《Waste management (New York, N.Y.)》2010,30(10):1948-1956
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery–distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain. 相似文献