首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlled release formulations of Thiram (Dimethylcarbamothioylsulfanyl-N,N-dimethylcarbamodithioate), a contact fungicide, have been prepared using laboratory synthesized poly(ethylene glycol) (PEG) based functionalized amphiphilic copolymers. The kinetics of thiram from developed controlled release (CR) formulations were studied in comparison with that of the commercially available 75 WS. Release from the commercial formulation was faster than with the developed CR formulations. Maximum amount of thiram was released on 35th day for PEG-2000 4d, 28th day for PEG-1500 4c, 21st day for PEG-1000 4b and 15th day for PEG-600 4a in comparison to commercial formulation (7th day). The diffusion exponent (n) of thiram in water ranged from 0.356 to 0.545 in the tested formulations. The half-release (t1/2) values ranged between 14.78 to 22.1 days, and the Period of Optimum Availability (POA) of thiram ranged from 7.79 to 25.15 days. An effort has also been made to identify the suitable polymers that could reduce the seed deterioration during storage and also act as an effective carrier of fungicide thiram. The results demonstrate that the seeds coated with the different formulations deteriorated at a slower pace as manifested in high germination percentage over control. Apart from the fungicidal effect of thiram, the polymers acted as barriers to moisture reducing the rate of seed deterioration and checked the degradation of thiram. The CR formulation 4d, with PEG 2000, was found to be most effective as seed coat.  相似文献   

2.
In order to evaluate the deleterious effects of exposure to pesticides on a target population, a comprehensive study on their degradation in the various segments of ecosystem under varying environmental conditions is needed. In view of this, a study has been carried out on the metabolic pathways of thiram, a dithiocarbamate fungicide, in a variety of matrices namely water and soil under controlled conditions and plants in field conditions. The identification of degradation products was carried out in samples collected at various time points using LC-MS. The degradation products identified can be rationalized as originating by a variety of processes like hydrolysis, oxidation, N-dealkylation and cyclization. As a result of these processes the presence of some metabolites like dimethyl dithiocarbamate, bis(dimethyl carbamoyl) disulphide, bis(dimethyl dithiocarbamoyl) trisulphide and N-methyl-amino-dithiocarbamoyl sulphide was observed in all the cases. However, some different metabolites were observed with the change in the matrix or its characteristics such as cyclised products 2(N, N-dimethyl amino)thiazoline carboxylic acid and 2-thioxo-4-thiazolidine were observed only in plants. The investigations reflect that degradation initiates with hydrolysis, subsequently oxidation/dealkylation, followed by different types of reactions. The pathways seem to be complex and dependent on the matrices. Dimethyl dithiocarbamate and oxon metabolites, which are more toxic than parent compound, seem to persist for a longer time. Results indicate persistence vis-a-vis toxicity of pesticide and its metabolites and also provide a data bank of metabolites for forensic and epidemiological investigations.  相似文献   

3.
4.
Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol–based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t1/2) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.  相似文献   

5.
Lee ES  Schwartz FW 《Chemosphere》2007,69(2):247-253
A well-based reactive barrier system using controlled-release KMnO4 has been recently developed as a long-term in situ treatment option for plumes of dense and non-aqueous phase liquids in groundwater. In order to take advantage of the merits of controlled release systems (CRS) in environmental remediation, the release behavior needs to be optimized for the hydrologic and environmental conditions of target treatment zone. Where release systems are expected to be operated over long times, like for the reactive barriers, it may only be practical to describe the long-term behavior numerically. We developed a numerical model capable of describing release characteristics associated with variable forms and structures of long-term CRS. Sensitivity analyses and illustrative simulations showed that the release kinetics and durations would be constrained by changes in agent solubility, bulk diffusion coefficients, or structures of the release devices. The generality of the numerical model was demonstrated through simulations for CRS with monolithic and double-layered matrices. The generalized model was then used for actual design and analyses of an encapsulated-matrix CRS, which can yield constant release kinetics for several years. A well-based reactive barrier system (4.05 x 10(3)m3) using the encapsulated-matrix CRS can release approximately 1.65 kg of active agent (here MnO4(-)) daily over the next 6.6 yr, creating prolonged reaction zone in the subsurface. The generalized model-based, target-specific approach using the long-term CRS could provide practical tool for improving the efficacy of advanced in situ remediation schemes such as in situ chemical oxidation, bioremediation, or in situ redox manipulation. Development of techniques for adjusting the bulk diffusion coefficients of the release matrices and facilitating the lateral spreading of the released agent is warranted.  相似文献   

6.
Controlled release nanoformulations of carbendazim (Methyl 1H-benzimidazol-2-ylcarbamate), a systemic fungicide, have been prepared using laboratory synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers. The release kinetics of carbendazim from developed controlled release (CR) formulations was studied and compared with that of the commercially available 50% Wettable Powder (WP). Further, the bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Rhizoctonia solani by the poison food technique method. The release of maximum amount of carbendazim from developed formulations was dependent on the molecular weight of PEGs and was found to increase with increasing molecular weights. The range of carbendazim release was found to be between 10th to 35th day as compared to commercial formulation which was up to 7th day. The diffusion exponent (n value) of carbendazim in water ranged from 0.37 to 0.52 in the tested formulations. The half-release (t1/2) values ranged between 9.47 and 24.20 days, and the period of optimum availability (POA) of carbendazim ranged from 9.15 to 26.63 days. Also, ED50 values of the developed formulations vary from 0.40 to 0.74 mg L?1. These formulations can be used to optimize the release of carbendazim to achieve disease control for the desired period depending on the matrix of the polymer used.  相似文献   

7.
Abstract

A single i.p. dose (120 mg/kg) of thiram given to male Sprague‐Dawley rats caused a significant increase in the activity of SGOT and SGPT 24 hr post‐treatment indicating liver damage. A considerable diminution in the serum cholinesterase activity was also noted in the treated rats as against the control animals. Additional evidence for thiram‐induced liver toxicity is provided by the observation that there was approximately 50% inhibition of the activity of hepatic microsomal benzphetamine N‐demethylase with a concomitant decrease in the concentration of cytochrome P‐450, an important component of the mixed‐function oxidase system. Although not significant, hepatic glutathione levels were also depleted by thiram, probably making the liver susceptible to toxic injury.  相似文献   

8.
Controlled release formulations of imazethapyr herbicide have been developed employing guar gum-g-cl-polyacrylate/bentonite clay hydrogel composite (GG-HG) and guar gum-g-cl-PNIPAm nano hydrogel (GG-NHG) as carriers, to assess the suitability of biopolymeric hydrogels as controlled herbicide release devices. The kinetics of imazethapyr release from the developed formulations was studied in water and it revealed that the developed formulations of imazethapyr behaved as slow release formulations as compared to commercial formulation. The calculated diffusion exponent (n) values showed that Fickian diffusion was the predominant mechanism of imazethapyr release from the developed formulations. Time for release of half of the loaded imazethapyr (t1/2) ranged between 0.06 and 4.8 days in case of GG-NHG and 4.4 and 12.6 days for the GG-HG formulations. Weed control index (WCI) of GG-HG and GG-NHG formulations was similar to that of the commercial formulation and the herbicidal effect was observed for relatively longer period. Guar gum-based biopolymeric hydrogels in both macro and nano particle size range can serve as potential carriers in developing slow release herbicide formulations.  相似文献   

9.
Jiang JQ  Cooper C  Ouki S 《Chemosphere》2002,47(7):711-716
This study concerns with the development of modified montmorillonites as adsorbents for water treatment. Polymeric aluminium and iron intercalated forms of montmorillonites have been prepared in the absence and presence of an alkylammonium cationic surfactant (Hexdecyl-trimethyl-ammonium bromide, HDTMA). Montmorillonites intercalated with polymeric Al, Fe, Fe/Al (2:1 Fe to Al ratio in solution), possess large N2 Brunauer-Emmett-Teller (BET) surface areas. XRD data also shows trace amounts of illite and plagioclase within the clay materials. Montmorillonites intercalated with HDTMA, polymeric Fe/HDTMA, polymeric Al/HDTMA and polymeric Fe/Al/HDTMA (1:1 metal to surfactant molar ratio in solution) undergo some losses of N2 BET surface areas. Preliminary adsorption studies on phenol have shown that polymeric Al/HDTMA- and HDTMA-only-modified montmorillonites possess a good affinity for phenol, whereas the polymeric Al/Fe modified- and starting montmorillonites have little affinity for phenol adsorption.  相似文献   

10.
Abstract

The effects of Thiram and 2 commercial Thiram formulations on the growth and respiration of rhizobia were tested to compare the extent of bacteriostasis under controlled conditions. Although bacteriostasis was measurable at all concentrations tested, liquid cultures grew to maximum optical density in Thiram suspensions containing less than 10 μg/ml. Percentage germination, root elongation, and subsequent nodulation by R. meliloti of 2 cultivars of alfalfa, were determined in thiram suspensions to determine potential physiological effects of the fungicide on the host plant. Conditions were identified which produced enhancement or inhibition of germination, root elongation and development of nodular nitrogenase activity. At concentrations of the fungicide recommended for seed application, only minor, temporary bacteriostasis was observed as a possible negative effect while germination rates of fungi‐contaminated seed were markedly increased.  相似文献   

11.
The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems.  相似文献   

12.
Controlled release (CR) formulations of metribuzin in Polyvinyl chloride [(PVC) (emulsion)], carboxy methyl cellulose (CMC), and carboxy methyl cellulose-kaolinite composite (CMC-KAO), are reported. Kinetics of its release in water and soil was studied in comparison with the commercial formulation (75 DF). Metribuzin from the commercial formulation became non-detectable after 35 days whereas it attained maxima between 35–49 days and became non-detectable after 63 days in the developed products. Amongst the CR formulations, the release in both water and soil was the fastest in CMC and slowest in PVC. The CMC-KAO composite reduced the rate of release as compared to CMC alone. The diffusion exponent (n value) of metribuzin in water and soil ranged from 0.515 to 0.745 and 0.662 to 1.296, respectively in the various formulations. The release was diffusion controlled with half release time (t1/2) from different controlled release matrices of 12.98 to 47.63 days in water and 16.90 to 51.79 days in soil. It was 3.25 and 4.66 days, respectively in the commercial formulation. The period of optimum availability of metribuzin in water and soil from controlled released formulations ranged from 15.09 to 31.68 and 17.99 to 34.72 days as against 5.03 and 8.80 days in the commercial formulation.  相似文献   

13.
The herbicides chloridazon and metribuzin, identified as groundwater pollutants, were incorporated in alginate-based granules to obtain controlled release properties. In this research the effect of incorporation of sorbents such as bentonite, anthracite and activated carbon in alginate basic formulation were not only studied on encapsulation efficiency but also on the release rate of herbicides which was studied using water release kinetic tests. In addition, sorption studies of herbicides with bentonite, anthracite and activated carbon were made. The kinetic experiments of chloridazon and metribuzin release in water have shown that the release rate is higher in metribuzin systems than in those prepared with chloridazon, which has lower water solubility. Besides, it can be deduced that the use of sorbents reduces the release rate of the chloridazon and metribuzin in comparison to the technical product and to the alginate formulation without sorbents. The highest decrease in release rate corresponds to the formulations prepared with activated carbon as a sorbent. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, T(50), were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the herbicide release data, the release of chloridazon and metribuzin from the various formulations into water is controlled by a diffusion mechanism. Sorption capacity of the sorbents for chloridazon and metribuzin, ranging from 0.53mgkg(-1) for the metribuzin sorption on bentonite to 2.03x10(5)mgkg(-1) for the sorption of chloridazon on the activated carbon, was the most important factor modulating the herbicide release.  相似文献   

14.
Controlled release (CR) nano-formulations of Mancozeb (manganese-zinc double salt of N,N-bisdithiocarbamic acid), a protective fungicide, have been prepared using laboratory-synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers without using any surfactants or external additives. The release kinetics of the developed Mancozeb CR formulations were studied and compared with that of commercially available 42% suspension concentrate and 75% wettable powder. Maximum amount of Mancozeb was released on 42nd day for PEG-600 and octyl chain, PEG-1000 and octyl chain, and PEG-600 and hexadecyl chain, on 35th day for PEG-1000 and hexadecyl chain, on 28th day for PEG-1500 and octyl chain, PEG-2000 and octyl chain, PEG-1500 and hexadecyl chain, and PEG-2000 and hexadecyl chain in comparison to both commercial formulations (15th day). The diffusion exponent (n value) of Mancozeb in water ranged from 0.42 to 0.62 in tested formulations. The half-release (t1/2) values ranged from 17.35 to 35.14 days, and the period of optimum availability of Mancozeb ranged from 18.54 to 35.42 days. Further, the in vitro bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Alternaria solani and Sclerotium rolfsii by poison food technique. Effective dose for 50% inhibition in mgL?1 (ED50) values of developed formulations varied from 1.31 to 2.79 mg L?1 for A. solani, and 1.60 to 3.14 mg L?1 for S. rolfsii. The present methodology is simple, economical, and eco-friendly for the development of environment-friendly CR formulations of Mancozeb. These formulations can be used to optimize the release of Mancozeb to achieve disease control for the desired period depending upon the matrix of the polymer used. Importantly, the maximum amount of active ingredient remains available for a reasonable period after application. In addition, the developed CR formulations were found to be suitable for fungicidal applications, allowing use of Mancozeb in lower doses.  相似文献   

15.
The effects of carbendazim, captan, thiram, and mancozeb, on plant vitality, chlorophyll content, N uptake, protein content, nodulation, and seed yield in chickpea (Cicer arietinun) were assessed in a controlled environment. Seeds treated with fungicides at 1 and 1.5 g.a.i. kg seed had no significant adverse effect on plant vigor, seed yield, and N and protein contents. In contrast, fungicides applied at 2 g.a.i./kg of captan, thiram and mancozeb, significantly reduced the measured parameters. In general, the toxicity of fungicides in terms of seed yield increased in the following order: Control=carbendazim > thiram > captan > mancozeb. Total chlorophyll content in foliage declined consistently with fungicides dose rates and application days. Seeds treated with lower rates of fungicides significantly increased nodulation (nodule number per plant and its dry mass) and were compatible with chickpea inoculum used in this study. Although carbendazim at 2 g.a.i. kg seed had no phytotoxic effect assessed under greenhouse conditions, it significantly reduced the chlorophyll content, nodulation (60d) and N content in shoots.  相似文献   

16.
Controlled release formulations of β-cyfluthrin, a non-systemic, broad spectrum contact insecticide, have been prepared using laboratory synthesized poly(ethylene glycol) (PEG) based amphiphilic copolymers. Copolymers of polyethylene glycols of different molecular weights and various dimethyl esters, viz. dimethyl isophthalate, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of β-cyfluthrin from developed controlled release (CR) formulations were studied in comparison with that of the commercially available 025 SC. Release from the commercial formulation was faster than with the developed CR formulations. The rate of release of encapsulated β-cyfluthrin from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of β-cyfluthrin in water ranged from 0.427 to 0.622 in the tested formulations. The release was diffusion controlled with a half-release time (t(?)) of 3.92 to 7.9 days in water from different formulations, and the period of optimum availability (POA) of β-cyfluthrin ranged from 1.4 to 20.5 days. The results suggest that the application rate of β-cyfluthrin can be optimized to achieve insect control at the desired level and period.  相似文献   

17.
The relative contributions of four mechanisms of oxygen transport in multilayer composite (MLC) caps placed over oxygen-consuming mine waste were evaluated using numerical and analytical methods. MLC caps are defined here as caps consisting of earthen and geosynthetic (polymeric) components where a composite barrier layer consisting of a geomembrane (1-2 mm thick polymeric sheet) overlying a clay layer is the primary barrier to transport. The transport mechanisms that were considered are gas-phase advective transport, gas-phase diffusive transport, liquid-phase advective transport via infiltrating precipitation and liquid-phase diffusive transport. A numerical model was developed to simulate gas-phase advective-diffusive transport of oxygen through a multilayer cap containing seven layers. This model was also used to simulate oxygen diffusion in the liquid phase. An approximate analytical method was used to compute the advective flux of oxygen in the liquid phase. The numerical model was verified for limiting cases using an analytical solution. Comparisons were also made between model predictions and field data for earthen caps reported by others. Results of the analysis show that the dominant mechanism for oxygen transport through MLC caps is gas-phase diffusion. For the cases that were considered, the gas-phase diffusive flux typically comprises at least 99% of the total oxygen flux. Thus, designers of MLC caps should focus on design elements and features that will limit diffusion of gas-phase oxygen.  相似文献   

18.
Recent research has identified that the major fraction of chemical oxygen demand in domestic wastewaters is in particulate form. The research presented herein develops the kinetics of particle removal as a response to bioflocculation at the surface of aerobic biofilms. This study focuses on the removal of particles that are maintained in aqueous suspension after 30 minutes of gravity settling. It is helpful to consider the particulate organics removal process in biofilms as the sum of four steps, namely (1) external transport of the particles to the biofilm surface, (2) bioflocculation, (3) organic particulate hydrolysis, and (4) diffusion and reaction of the solubilized organics by the bacterial cells comprising the biofilm. Organic (native corn starch) and inorganic particle (Min-U-Sil 10 [U.S. Silica Company, Berkeley Springs, West Virginia]) suspensions, with micronutrients, were continuously fed to a rotating disc biofilm reactor to verify a first-order kinetic expression that has been used to describe bioflocculation and to demonstrate that bioflocculation is the primary particle removal mechanism. Extracellular polymeric substances were extracted and quantified to describe the role they play in the bioflocculation process.  相似文献   

19.
Rapid conversion and high rate of excretion of the fungicide, Imugan- 14C (N-formyl-N′ - (3,4-dichlorophenyl)-2, 2, 2-trichloroacetaldehydeaminal, Fig. 1) has been observed in rats upon long term oral administration2. In simulated waste composting experiments3 this fungicide is metabolized to 3,4-dichloroaniline (3,4-DCA). 3,4-DCA and 3,3′, 4,4′-tetrachloroazobenzene (3,3′, 4,4′-TCAB) have been isolated from soil treated with it4. Algae have been found to convert it to a ring hydroxylated monohydroxy 3,3′,4,4′-TCAB5. In this work, the isolation and structure elucidation of metabolites of Imugan excreted with urine and faeces of rats are reported.  相似文献   

20.
C.M. Tu 《Chemosphere》1981,10(1):127-134
A study of the effect of 5 fungicide seed treatments on alfalfa (Medicagosativa L. var. Vernal) growth and nodulation by Rhizobiummeliloti 102F66 was conducted in a growth chamber. Captan, maneb and thiram exhibited greater toxicity to R. meliloti and alfalfa plants than that of benomyl and zineb. Recovery of the inhibitory effect was rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号