首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the rivers water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the rivers seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the rivers thermal regime during certain conditions for over 200 km of the mainstem.  相似文献   

2.
A steady-state space radiant heat model and a stove combustion model are developed to simulate the heat exchanges between various surfaces in the room and the stove and stack surfaces, assuming stiochiometric combustion inside the stove and the exhaust gases flow out through the stack by natural convection. The space heat model calculates the fuel consumption, the stove, stack temperatures, and the mass flow rate of exhaust gases, and provides an opportunity to study the energy efficiency of the stove, while satisfying the constraints of thermal comfort. Fanger (1982) Fanger, P. O. 1982. Thermal Comfort Analysis and Applications in Engineering, 156198. New York: McGraw Hill.  [Google Scholar] model and a radiation exchange model between various surfaces of the space, the thermal building energy balance, and stove combustion process is applied to determine the mean radiant temperature (MRT) and the extent of thermal comfort as determined by predicted mean vote (PMV).

The overall model is validated by performing experiments in a room placed inside a controlled outdoor environment. The room is heated using a domestic stove common for rural areas of Lebanon and the MRT, the room air temperature, the walls and window temperatures are measured at two stove positions. The measured MRT, the average room temperature, and the wall surface temperatures agreed within ±7% of values predicted by the numerical model.

A parametric study is performed to optimize the stove and occupant locations in the room where adequate comfort level can be maintained at lower fuel consumption levels. The values of MRT and PMV depend strongly on the position of the radiant stove heater and stack with respect to the cold window and the occupant location. It is shown that it is possible to save up to 15% in stove fuel consumption by changing the stove position in the room with respect to the window and to the person, while maintaining the same level of comfort.  相似文献   

3.
Common decision support tools and a growing body of knowledge about ecological recovery can help inform and guide large state and federal restoration programs affecting thousands of impaired waters. Under the federal Clean Water Act (CWA), waters not meeting state Water Quality Standards due to impairment by pollutants are placed on the CWA Section 303(d) list, scheduled for Total Maximum Daily Load (TMDL) development, and ultimately restored. Tens of thousands of 303(d)-listed waters, many with completed TMDLs, represent a restoration workload of many years. State TMDL scheduling and implementation decisions influence the choice of waters and the sequence of restoration. Strategies that compare these waters’ recovery potential could optimize the gain of ecological resources by restoring promising sites earlier. We explored ways for states to use recovery potential in restoration priority setting with landscape analysis methods, geographic data, and impaired waters monitoring data. From the literature and practice we identified measurable, recovery-relevant ecological, stressor, and social context metrics and developed a restorability screening approach adaptable to widely different environments and program goals. In this paper we describe the indicators, the methodology, and three statewide, recovery-based targeting and prioritization projects. We also call for refining the scientific basis for estimating recovery potential.
Paul ZephEmail:
  相似文献   

4.
Hester, Erich T. and Martin W. Doyle, 2011. Human Impacts to River Temperature and Their Effects on Biological Processes: A Quantitative Synthesis. Journal of the American Water Resources Association (JAWRA) 47(3):571‐587. DOI: 10.1111/j.1752‐1688.2011.00525.x Abstract: Land‐use change and water resources management increasingly impact stream and river temperatures and therefore aquatic organisms. Efforts at thermal mitigation are expected to grow in future decades. Yet the biological consequences of both human thermal impacts and proposed mitigation options are poorly quantified. This study provides such context for river thermal management in two ways. First, we summarize the full spectrum of human thermal impacts to help thermal managers consider the relative magnitudes of all impacts and mitigation options. Second, we synthesize biological sensitivity to river temperature shifts using thermal performance curves, which relate organism‐level biological processes to temperature. This approach supplements the popular use of thermal thresholds by directly estimating the impact of temperature shifts on the rates of key biological processes (e.g., growth). Our results quantify a diverse array of human thermal impacts, revealing that human actions tend to increase more than decrease river temperatures. Our results also provide a practical framework in which to quantify the sensitivity of river organisms to such impacts and related mitigation options. Finally, among the data and studies we synthesized, river organisms appear to be more sensitive to temperature above than below their thermal maxima, and fish are more sensitive to temperature change than invertebrates.  相似文献   

5.
Using specially designed temperature profiling equipment, two surveys were conducted during thermal backwashing operations at Pilgrim Nuclear Power Station to determine the spatial and temporal extent of temperature rises above ambient. Thermal backwashing is a process where biofouling is combated by a heat treatment procedure. Backwashing formed a thermal plume about 5- to 6-ft thick (1.5- to 1.8-m) in front of the intake screenwall. Maximum observed surface temperatures were 101.0°F (38.3°C), representing a rise (T) of about 43.4°F (24.1°C) above ambient. The frontal zone of the plume spread gradually seaward at about 0.2 kn. Its outer edge became thinner and rapidly cooled, presumably by advection and turbulent diffusion associated with currents from the reverse pumping and local changes from dissipation to the atmosphere. Along the intake shoreline, the plume was often less than 1 ft (0.3 m) thick. Most of the hot water was dissipated within several hundred feet of the intake with Ts of about 10.0 to 15.0°F (5.6 to 8.3°C) above ambient. Under the influence of 15 mph southwesterly winds during the second survey, some warmed water was apparently carried beyond the outer breakwaters into Cape Cod Bay. These surveys provided real-time data indicating that the backwashing operation caused a relatively thin thermal plume, which spread rapidly from the intake out across the study area and along the seaward breakwater. Within a few hours these backwash thermal plumes were completely dissipated.Formerly affiliated with Normandeau Associates, Inc., Bedford, New Hampshire.  相似文献   

6.
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   

7.
We estimated the effects of a temperature control device (TCD) on a suite of thermodynamic and limnological attributes for a large storage reservoir, Shasta Lake, in northern California. Shasta Dam was constructed in 1945 with a fixed-elevation penstock. The TCD was installed in 1997 to improve downstream temperatures for endangered salmonids by releasing epilimnetic waters in the winter/spring and hypolimnetic waters in the summer/fall. We calibrated a two-dimensional hydrodynamic reservoir water quality model, CE-QUAL-W2, and applied a structured design-of-experiment simulation procedure to predict the principal limnological effects of the TCD under a variety of environmental scenarios. Calibration goodness-of-fit ranged from good to poor depending on the constituent simulated, with an R 2 of 0.9 for water temperature but 0.3 for phytoplankton. Although the chemical and thermal characteristics of the discharge changed markedly, the reservoir's characteristics remained relatively unchanged. Simulations showed the TCD causing an earlier onset and shorter duration of summer stratification, but no dramatic affect on Shasta's nutrient composition. Peak in-reservoir phytoplankton production may begin earlier and be stronger in the fall with the TCD, while outfall phytoplankton concentrations may be much greater in the spring. Many model predictions differed from our a priori expectations that had been shaped by an intensive, but limited-duration, data collection effort. Hydrologic and meteorological variables, most notably reservoir carryover storage at the beginning of the calendar year, influenced model predictions much more strongly than the TCD. Model results indicate that greater control over reservoir limnology and release quality may be gained by carefully managing reservoir volume through the year than with the TCD alone. RID=" ID=" Author to whom correspondence should be addressed. e-mail: John_Bartholow@USGS.gov  相似文献   

8.
ABSTRACT Two lakes having similar soil types were studied to determine the effects of age and water fluctuations on plankton, benthos and fish populations. Bluff Lake is an older man-made lake which is drawn down in the mid-summer. Oktibbeha County Lake is a young lake and the water levels are maintained. Chemistry data from the two lakes indicate that their chemical properties are very similar. Neither lake would be considered very fertile. Net plankton populations in Bluff Lake and Oktibbeha County Lake were comparable when analyzed on a number of organisms per liter basis. Fluctuations of water levels did not seem to have an effect on the net plankton populations. The benthic population in Bluff Lake is slightly higher than that found in Oktibbeha County Lake. This is true for both numbers and weight per square meter. The species composition of benthic organisms in the two lakes were similar. Based on one-acre samples from each lake, Bluff Lake has a more balanced fish population than does Oktibbeha County Lake. Neither, however, seems to support populations of game fish in which a high percentage of these are in the available or harvestable range. Both lakes contain high populations of gizzard shad.  相似文献   

9.
Fecal bacteria have traditionally been used as indicator organisms to monitor the quality of recreational waters. Recent work has questioned the robustness of traditional indicators, particularly at seawater bathing beaches. For example, a study of Florida beaches found unexpectedly high abundances of Escherichia coli, fecal coliforms, and enterococci in beach sand. The aim of the present study was to explain these abundances by assessing the survival of E. coli and enterococci in beach sand relative to seawater. We used a combination of quantitative laboratory mesocosm experiments and field observations. Results suggested that E. coli and enterococci exhibited increased survivability and growth in sand relative to seawater. Because fecal bacteria are capable of replicating in sand, at least under controlled laboratory conditions, the results suggest that sand may be an important reservoir of metabolically active fecal organisms. Experiments with "natural" mesocosms (i.e., unsterilized sand or water rich in micropredators and native bacteria) failed to show the same increases in fecal indicators as was found in sterile sand. It is postulated that this was due to predation and competition with indigenous bacteria in these "natural" systems. Nonetheless, high populations of indicators were maintained and recovered from sand over the duration of the experiment as opposed to the die-off noted in water. Indicator bacteria may wash out of sand into shoreline waters during weather and tidal events, thereby decreasing the effectiveness of these indicators as predictors of health risk and complicating the interpretations for water quality managers.  相似文献   

10.
Summary Past and current uncontrolled dumping, land application and accidental spills of recalcitrant, toxic environmental pollutants such as DDT and polychlorinated biphenyls (PCBs) pose a continued world-wide environmental threat, in particular to aquatic environments. Bioaccumulative contaminants are rapidly absorbed out of water-borne ambient environments and concentrated in the tissues of living aquatic organisms at concentrations that can range from thousands to millions of times greater than levels in the ambient environment. These absorbed levels are high enough to cause dysfunction in the organisms and potential harmful effects to humans. An established technology capable of remediating the low contaminant levels originating in the ambient aquatic environment does not currently exist. This paper proposes the macro-bioremediation process whereby certain fish and other macroscopic aquatic organisms could be used to filter, concentrate and remove bioaccumulative contaminants from polluted aqueous systems. Contaminant removal would involve the harvesting and subsequent restocking of aquatic organisms capable of bioaccumulating high contaminant levels in relatively short time periods. Tissues of harvested organisms could be composted with specialized fungus and bacteria to fully degrade the recalcitrant contaminants. The macro-bioremediation process could be used at numerous geographic locations for the restoration of natural aquatic environments, supplemental wetlands treatment and for waste-water, hazardous waste and sludge treatment augmentation.  相似文献   

11.
12.
ABSTRACT: A canopy reflectance model is incorporated into a routine for simulating water and energy flows in the soil-plant-atmosphere system. The reflectance model is structured tocalculate canopy albedo throughout each simulation period and to determine spectral reflectances at a specified time during the day. Spectral vegetation indices are then calculated from the reflectances and related to the evapotranspiration and thermal response of the canopy. The canopy reflectance model is also used to establish the photo-sytheticaily active radiation load at various depths in the canopy. Stomatal resistances are calculated using these radiation values and integrated to give the minimum canopy resistance. Actual canopy resistance is obtained by adjusting minimum canopy resistance for environmental stresses such as leaf water potential and leaf temperature. Using data for a soybean canopy, canopy evapotranspiration and temperatures are simulated for a range of leaf area index values and compared with the corresponding spectral vegetation indices. The resuits indicate that the normalized difference spectral index has an inverse linear relationship with canopy temperature, concurring with results obtained from satellite observations. The possibility of using a spectral vegetation index and thermal observations together to parameterize surface moisture availability for evapotranspiration is considered.  相似文献   

13.
Wetland environmental characteristics are examined to determine their spatial and temporal relationships. Two very different Oregon freshwater wetlands provided a range of wetland types. Results are evaluated to determine the possible use of environmental characteristics in defining wetlands and their boundaries. Representative physical, hydrological, and edaphic properties were periodically measured in microplots along upland/wetland transects. A multivariate approach is stressed in the data analysis; correlation, cluster analysis, and principal components analyses were used. The results indicate the environmental characteristics change in a quantifiable manner both spatially and temporally. The controlling mechanism is moisture, spatially in terms of the upland/wetland transect and temporally with respect to seasonal response. These changes do not correlate well with vegetation. Several hypotheses are offered as an explanation. Correlation within environmental characteristics is variable but definite patterns are discernible. These data suggest both single and combinations of environmental characteristics that could serve as keys in wetland identification and boundary determination. However, before extensive use is made of this information additional long-term monitoring of wetland environmental characteristics will be required.  相似文献   

14.
Natural refrigerant ammonia R-717 and synthetic azeotropic refrigerant R-507 (a blend containing 50% R-143a and 5% R-125 by weight) are used in a wide range of refrigeration systems especially in low-temperature applications. R-717 and R-507 are ozone friendly refrigerants, which have no Ozone Depletion Potential (ODP). Global Warming Potential (GWP) of R-717 and R-507 is equal to zero and 3300, respectively. The high amount of R-507 GWP demonstrates its negative effect on the Earth’s climate change. In this study, a refrigerated warehouse located in Cincinnati, Ohio was modeled and the total energy demand and Coefficient of Performance (COP) was evaluated by eQUEST using two scenarios. The R-717 and R-507 were used as refrigerant in the first and second scenarios, respectively. The results showed that using R-717 in the refrigeration system leads to a 15% energy saving and a higher COP compared to R-507 in all working conditions. The only exception is that at an evaporating temperature below ?35°C which COP values of both refrigerants are approximately equal.  相似文献   

15.
Abstract: In January 2001, the U.S. Supreme Court ruled that the U.S. Army Corps of Engineers exceeded its statutory authority by asserting Clean Water Act (CWA) jurisdiction over non‐navigable, isolated, intrastate waters based solely on their use by migratory birds. The Supreme Court’s majority opinion addressed broader issues of CWA jurisdiction by implying that the CWA intended some “connection” to navigability and that isolated waters need a “significant nexus” to navigable waters to be jurisdictional. Subsequent to this decision (SWANCC), there have been many lawsuits challenging CWA jurisdiction, many of which are focused on headwater, intermittent, and ephemeral streams. To inform the legal and policy debate surrounding this issue, we present information on the geographic distribution of headwater streams and intermittent and ephemeral streams throughout the U.S., summarize major findings from the scientific literature in considering hydrological connectivity between headwater streams and downstream waters, and relate the scientific information presented to policy issues surrounding the scope of waters protected under the CWA. Headwater streams comprise approximately 53% (2,900,000 km) of the total stream length in the U.S., excluding Alaska, and intermittent and ephemeral streams comprise approximately 59% (3,200,000 km) of the total stream length and approximately 50% (1,460,000 km) of the headwater stream length in the U.S., excluding Alaska. Hillslopes, headwater streams, and downstream waters are best described as individual elements of integrated hydrological systems. Hydrological connectivity allows for the exchange of mass, momentum, energy, and organisms longitudinally, laterally, vertically, and temporally between headwater streams and downstream waters. Via hydrological connectivity, headwater, intermittent and ephemeral streams cumulatively contribute to the functional integrity of downstream waters; hydrologically and ecologically, they are a part of the tributary system. As this debate continues, scientific input from multiple fields will be important for policymaking at the federal, state, and local levels and to inform water resource management regardless of the level at which those decisions are being made. Strengthening the interface between science, policy, and public participation is critical if we are going to achieve effective water resource management.  相似文献   

16.
This paper presents a new habitat suitability modeling method whose main properties are as follows: (1) It is based on the density of observation points in the environmental space, which enables it to fit complex distributions (e.g. nongaussian, bimodal, asymmetrical, etc.). (2) This density is modeled by computing the geometric mean to all observation points, which we show to be a good trade-off between goodness of fit and prediction power. (3) It does not need any absence information, which is generally difficult to collect and of dubious reliability. (4) The environmental space is represented either by an expert-selection of standardized variables or the axes of a factor analysis [in this paper we used the Ecological Niche Factor Analysis (ENFA)].We first explain the details of the geometric mean algorithm and then we apply it to the bearded vulture (Gypaetus barbatus) habitat in the Swiss Alps. The results are compared to those obtained by the median algorithm and tested by jack-knife cross-validation. We also discuss other related algorithms (BIOCLIM, HABITAT, and DOMAIN). All these analyses were implemented into and performed with the ecology-oriented GIS software BIOMAPPER 2.0.The results show the geometric mean to perform better than the median algorithm, as it produces a tighter fit to the bimodal distribution of the bearded vulture in the environmental space. However, the median algorithm being quicker, it could be preferred when modeling more usual distribution.  相似文献   

17.
A spatially explicit linear, additive model was developed for quantifying site characteristics of riparian areas of the lower Cedar River, Washington, USA. The spatial complexity and distribution of combined habitat and anthropogenic landscape features were used to define habitat indices that indicate the relative quality of riparian habitats. Patches of contiguous grid cells were measured in terms of their locations, sizes, and relative degree of fragmentation. Additionally, intrapatch heterogeneity was measured to identify unique combinations of habitat and anthropogenic factors for individual grid cells within patches. Model verification indicated that existing floodplain riparian habitats received positive indices more than 90% of the time. Mean patch sizes and fragmentation indices were similar for all positive indices throughout the reaches in the valley floor. Among all reaches, reach 7 had the highest number of positive patches due to a higher degree of meandering in this reach. This procedure and model outputs provide unique screening opportunities for prioritizing management of riparian areas (e.g., conservation, restoration and enhancement).  相似文献   

18.
The siting of hazardous waste facilities constitutes a special case of the many no win environmental decisions we face. They share common features: (a) we must decide something; (b) the decision affects some people more than others; (c) as scientists we are not 100% confident of our research results; (d) elements of the decision remain unquantifiable; and (e) decisions combine both scientific and political elements. In this paper we attempt to illustrate and analyze several examples that combine all of these elements and to suggest methods which would lead toward a scientific valid and politically useful resolution. Using well-known examples such as the public's fear of death from nuclear power, snakebite, and smoking, we attempt to integrate public perception of risks into a decision-making model. Finally, the conclusions deal with the role of policy making, public perception, and science in resolving environmental controversies. We do not, however, solve this perplexing problem.  相似文献   

19.
Sediments from Polish coastal environments were classified by a quality assessment approach that took into account trace metal and organic micropollutant concentrations, grain-size distribution, and organic carbon content. Generally, no benthic organisms were found at sites where sediments were classified as heavily polluted. However, areas characterized by a moderate contamination showed a variable composition of the benthic community and changing bioaccumulation patterns; therefore, no single species found in the Gulf of Gdańsk could be considered representative of the whole benthic environment. Although sediment monitoring must be considered a suitable tool to detect hot-spot pollution areas in coastal and inland waters, it should be complemented by bioaccumulation measurements to evaluate the actual risk posed by contaminants to benthic organisms. This “biological information” allows a better appreciation of the real benthic infaunal community exposure to chemicals and can usefully complement the existing sediment quality guidelines.  相似文献   

20.
ABSTRACT: Hyalite Reservoir, Montana, was studied to determine properties of this small, montane, headwater, deep-release reservoir relative to reservoirs at lower elevations. While retention times for waters were as brief as 12 d, the mean residency of 40 d from mid-March to mid-December was within the range reported for other reservoirs. No significant through-reservoir gradients for suspended sediments were observed, contrasting to observations for most reservoirs. Thermal stratification, evident during the first part of the summer, was disrupted in August by cool, dense tributary inflows and strong wind-induced mixing. Dissolved oxygen concentrations paralleled temperature patterns in the reservoir; lowest average values for both occurred in waters sampled nearest the outlet. Total phosphorus averaged greater than twice the total nitrogen concentrations; greatest average concentrations for both were found in the near-bottom waters nearest the outlet. Enrichment of nitrogen concentrations in outflow over inflow waters is hypothesized to occur through nitrogen fixation by Aphanizonwnon flos-aquae. Despite the relatively high quality of waters from tributary inflows, an algal bloom, chlorophyll a concentrations, and primary productivity estimates suggested that the reservoir was mesotrophic. Circulation of waters within the reservoir was primarily influenced by wind-induced mixing, thermal gradients, and currents produced by the deep-water outlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号