首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
廊坊市大气污染特征与污染物排放源研究   总被引:2,自引:0,他引:2  
通过廊坊市2014年12个监测站点的大气污染物监测数据,分析了廊坊市大气污染的主要特征,包括空气质量水平、大气污染的季节与空间分布.结果发现,虽然与2013年相比2014年空气质量有所改善,但12个站点空气质量超标均十分严重.秋季、冬季与春季PM_(2.5)为主要的空气污染物,夏季O3日最大8 h平均浓度频繁超标,需要引起重视.为实现廊坊市空气质量模拟,制定最优空气质量改善政策,基于污染源普查、环境统计数据,编制了廊坊市主要大气污染物排放清单.工业部门中,电力、热力生产和供应业、黑色金属冶炼及压延加工业是SO_2、NO_x和PM_(2.5)的重要来源.VOCs则主要来自于化学原料和化学制品制造业、黑色金属冶炼及压延加工业、食品制造业.另外,廊坊全市道路扬尘和建筑施工扬尘污染贡献了PM2.5的38.6%,但扬尘的管理十分薄弱.同时结果表明,廊坊市黄标车排放在交通源排放中比重较高.因此,需要对上述重点排放源进行有效控制,从而改善廊坊市空气质量.  相似文献   

2.
长江三角洲地区能源消费大气污染物排放特征   总被引:7,自引:0,他引:7       下载免费PDF全文
针对长江三角洲(以下简称“长三角”)16个主要地区,基于常规可获取的统计资料确定污染源活动水平,结合最新的污染源调查资料及相关研究成果确定污染物排放因子,以2008年为基准年,研究了能源消费大气污染物排放特征,建立了具有较高时空分辨率、且便于滚动更新的网格化动态排放清单.结果表明:长三角16个地区2008年能源消费过程中SO2、NOx、PM10、PM2.5、CO的排放量分别为3158.58, 3154.96,979.76,632.34,5258.08kt.其中上海、苏州、南京、杭州、无锡和宁波6城市污染物排放总量均占长三角地区排放总量的60%左右.SO2和NOx排放主要集中在工业和火电部门,颗粒物和CO排放则主要集中在工业部门,机动车对于CO也有较大的排放贡献率.火电部门污染排放具有较强的月变化特征;道路机动车排放受居民出行规律影响,具有明显的周变化和日变化特征.  相似文献   

3.
基于全面开展大气污染源排放清单编制工作的要求,研究制定了天津市港口自有移动源排放清单.对道路和非道路移动源各源类6种大气污染物建立了分辨率为3 km×3 km的网格化排放清单,并分析其污染物排放时空分布特征,利用蒙特卡罗方法分析了清单的不确定性.结果表明,2020年港口自有移动源共排放PM10 148.22 t、 PM2.5 135.34 t、 SO2 1 061.04 t、 NOx 4 027.16 t、 CO 756.60 t和VOCs 237.07 t,其中道路和非道路移动源污染物总排放量占移动源排放量的比例分别为6.66%和93.34%.全港区自有道路移动源机动车污染物排放的主要贡献源是小型、中型、大型载客汽车(汽油)和重型载货汽车(柴油),非道路移动源排放的各污染物的主要贡献源均是船舶和工程机械.不确定性分析结果表明,移动源总体不确定性范围为-13.3%~16.53%.  相似文献   

4.
The 188 air contaminants designated as hazardous air pollutants, or air toxics, under the Clean Air Act Amendments of 1990 are associated with a variety of adverse human health impacts. The US Environmental Protection Agency recently developed estimates of 1990 outdoor concentrations of 148 air toxics for every census tract in the continental United States. This paper compares the results for urban and rural areas, and evaluates the relative contributions of large stationary sources (point sources), small stationary sources (area sources), and mobile sources. The estimated air toxics concentrations in urban areas were typically twice as high as in rural areas. There were more air toxics with modeled ambient concentrations in excess of health benchmarks in urban census tracts than in rural census tracts. Ambient concentrations attributable to area sources alone exceeded health benchmarks in a majority of urban census tracts for several pollutants; similar results were found for mobile sources. For point sources, exceedances of benchmarks generally occurred in fewer census tracts. These results show that reductions in emissions of air toxics from all three types of sources will be necessary to reduce anthropogenic air toxics concentrations to levels below the health benchmark concentrations.  相似文献   

5.
珠江三角洲城市间空气污染的相互影响   总被引:57,自引:3,他引:57       下载免费PDF全文
以2002年源排放清单、气象资料和空气质量观测资料为基础,利用CALPUFF模拟系统,通过数值模拟及对排放源现状分析,揭示了珠江三角洲内城市之间污染物相互输送的特点和规律,分析了不同城市空气污染影响因素的差异,定量给出了珠江三角洲城市间空气污染的相互影响和相互贡献.结果表明,珠江三角洲城市间污染相互作用显著,其中广州是最典型的与周边发生显著相互作用的城市之一.  相似文献   

6.
我国空气污染物人为源排放清单对比   总被引:6,自引:0,他引:6  
空气污染物排放清单是影响数值模式结果准确性的关键因子之一. 定义不同排放清单中同一污染物排放量最大值与最小值之差与平均值的比值为差异度,对比分析了4个国内外广泛应用的人为污染源排放清单(TRACE-P、INTEX-B、REAS1.1和REAS2.0). 结果表明:INTEX-B、REAS1.1和REAS2.0清单中给出的2006—2007年我国(不包括港澳台地区数据)SO2排放量差异度为12%,而在SO2排放量较大的省份(如山东、河北和河南等)差异度达30%以上; NOx和NMVOC(非甲烷挥发性有机物)的排放量差异度分别为51%和30%,在山东、江苏、浙江、北京和上海等经济较发达地区的差异度达到20%~80%. 相对于2000年的排放清单,2006—2007年排放清单各污染物的排放量增长明显,SO2、NOx和NMVOC的排放量在INTEX-B、REAS1.1和REAS2.0清单中的平均值分别为TRACE-P清单的1.6、1.9和1.5倍. 近年来经济的高速发展、能源消耗的增长和空气污染控制技术的应用等都会影响人为活动水平和排放因子的选取,这也是造成排放清单间存在差异的主要原因.   相似文献   

7.
工业密集区域具有复杂的排放特征,是目前排放清单建立的难点之一.以上海市宝山区为研究区域,采用自下而上的方式建立了工业密集区域的精细化大气污染物排放清单.通过整合多套现有的污染源数据库,对排放量估算进行质量控制,提高各污染物排放量估算的准确性;运用现场勘查和GPS定位对排放口进行定位,以弥补数据库中定位数据的缺失,并提高排放口定位数据的精确度.结果表明:工业区污染排放特征不同于一般区域,建议在小尺度排放清单的研制中需要特别关注.同时探索了在小尺度区域建立精细化污染源排放清单的可行性以及可能存在的问题,将为大尺度排放清单的建立提供有益的参考.  相似文献   

8.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主...  相似文献   

9.
大气污染物排放清单是了解各地区大气污染物排放及其时空分布,精确模拟该地区环境空气质量的最基础资料.现有大气污染物排放清单的粗时空分辨率,极大地限制了空气质量数值预报的准确性.本研究以江苏省大型固定燃煤源为例,以2012年为基准年,收集江苏省电力企业在线监控系统数据及江苏省大气核查核算表数据,结合相关文献的排放因子,分析了江苏省大型固定燃煤源主要污染物的总排放量和月变化特征.分析结果表明:1 SO2、NOx、TSP、PM10、PM2.5、CO、EC、OC、NMVOC、NH3等大气污染物的排放总量分别达到106.0、278.3、40.9、32.7、21.7、582.0、3.6、2.5、17.3、2.2 kt.2呈现2~3、7~8、12月排放量高,9~10月排放量低的月变化特征,可能原因是2~3月处于春节阶段,为保证节日供应,在此期间居民取暖、用电等都有可能增加;7~8月高温天气用电量增加,12月北方城市冬季燃煤取暖导致的煤炭消耗量增加.另外,由于部分污染物排放因子取自国内外相关文献,是本研究清单不确定性的主要因素.今后的工作可以在排放因子实测更新以及将排放清单纳入空气质量预报模式等方面进行更为深入的研究.  相似文献   

10.
京津冀地区钢铁行业高时空分辨率排放清单方法研究   总被引:13,自引:0,他引:13  
针对目前京津冀地区钢铁行业大气污染物排放量基数不清,排放清单缺失的现状,以钢铁行业调研、企业在线监测、污染源调查等数据为基础,综合考虑钢铁行业具体工艺设备、环保措施、产能等信息,按照自下而上的方法建立了一套高时空分辨率排放清单.经计算,2012年京津冀地区钢铁企业排放SO2为47.16万t,NOx为37.22万t,烟粉尘为34.15万t,其中烧结和高炉工艺为京津冀钢铁行业污染物的主要来源;从空间分布来看,唐山、邯郸两地区集中了整个京津冀地区一半以上的钢铁企业,其污染物排放量占到了整个区域钢铁企业排放总量的一半以上.  相似文献   

11.
天津市2017年移动源高时空分辨率排放清单   总被引:5,自引:5,他引:0  
移动源已成为城市地区大气污染的主要贡献源.已有研究多关注道路移动源(机动车)或非道路移动源(工程机械、农业机械、船舶、铁路内燃机车和民航飞机)中单一源类的排放,欠缺对移动源总体排放特征的把握.本研究提出了移动源高时空分辨率排放清单的构建方法,据此建立了天津市2017年移动源排放清单,并分析其排放构成与时空特征.结果表明,天津市移动源CO、 VOCs、 NOx和PM10的排放量分别为18.30、 6.42、 14.99和0.84万t.道路移动源是CO和VOCs的主要贡献源,占比分别为85.38%和86.60%.非道路移动源是NOx和PM10的主要贡献源,占比分别为57.32%和66.95%.从时间变化来看,移动源所有污染物排放在2月均为最低,CO和VOCs在10月排放最高,而NOx和PM10则在8月排放最高.节假日(如春节和国庆节等)对移动源排放的时间变化影响显著.从空间分布来看,CO和VOCs排放主要集中于城区和车流量大的公路(高速路和国道)上,NO  相似文献   

12.
近年来,我国污染场地修复工程项目数量快速增长,其中有机污染场地修复工程中的大气二次污染问题受到广泛关注。为了实现污染场地的有效、安全治理,首先对我国目前污染场地修复现状及二次污染风险特点进行了分析,以北京焦化厂原址污染场地修复工程为例,对该类典型有机污染场地在异位修复工程中的主要施工工程和大气环境二次污染风险来源进行了详细分析,并针对修复工程中的气态污染物、尾气和扬尘3项关键要素建立了全面的大气环境二次污染防治措施体系。  相似文献   

13.
为进一步推动我国大气污染源排放清单的发展,详细回顾了我国大气污染源排放清单的发展历程及面临的挑战.我国大气污染源排放清单起步于20世纪80年代,2000年之后尤其是2014年,原环境保护部发布了一系列大气污染源排放清单编制技术指南,使我国大气污染源排放清单工作得到了迅速发展.30多年来基本形成了结合我国实际情况的大气污染源分类、大气污染物排放系数、大气污染物排放量确定方法等大气污染源排放清单相关技术方法.但目前我国尚未建立起排放清单编制的规范化工作程序,国家、省级和城市级环保部门在大气污染源排放清单工作中的分工尚不明晰,清单编制没有融入日常环境管理工作中,现有排放清单工作和研究成果相对分散、缺乏系统性,排放清单对环境管理的支撑作用尚未得到充分发挥.在综合分析了我国大气污染源排放清单取得的进展和面临挑战的基础上,提出如下建议:进一步完善我国大气污染源排放清单技术体系,使排放清单工作制度化、程序化、规范化,明确国家、省级和城市级环保部门在大气污染源排放清单工作中发挥的作用,使大气污染源排放清单成为各级环保部门每年必须完成的工作;进一步推广结合网格化管理、基于区县和乡镇调研的城市大气污染源排放清单编制技术;加强排放清单校核和不确定性分析研究等.   相似文献   

14.
突发型大气污染源位置识别反演问题的数值模拟   总被引:3,自引:2,他引:1  
在突发型大气污染事件中,能否根据临时监测数据对污染源的位置进行快速识别,对于城市大气污染源的控制管理以及改善城市空气质量意义重大.为了构建突发型大气污染源位置识别的空间反演算法,本文通过分析大气应急污染监测的临时采样数据,结合污染物浓度扩散模型,随机生成污染源和计算污染物浓度的空间分布,对突发型大气污染源进行定位并与实际测量结果进行对比分析,采用蒙特卡洛模拟(Monte Carlo simulation)对相关参数进行讨论,最终构建能对突发型大气污染源进行快速估计定位的空间反演算法.研究结果表明,本文构建的空间反演算法输出的污染源坐标与实际情况相符.因此,该算法可用于突发型大气污染源位置的快速识别.  相似文献   

15.
济南市大气污染物时空变化及预测分析   总被引:1,自引:1,他引:0       下载免费PDF全文
大气污染影响生产生活和人体健康,了解大气污染物时空分布特征及污染源是大气污染治理的基础和前提。基于济南市2014—2018年空气质量实时监测数据,主要污染物浓度数据和气象要素数据,运用相关分析法和BP神经网络预测模型,分析了济南市大气污染物时空分布特征及污染物来源,并对济南市6种主要污染物进行预测。结果表明:在时间维度上,空气质量呈逐年好转趋势,季节上则表现出冬季污染最严重,夏季最轻,采暖期污染物浓度远远高于非采暖期的特点;从日变化看,上下班高峰段是污染最严重时段。在空间维度上,城市外围污染较为严重,市区污染相对较轻。在污染物成分上,PM10逐渐成为颗粒物污染的主体。通过济南市污染物浓度预测结果,分析未来3年内污染物浓度变化情况,进一步提出合理优化的污染治理方案来改善济南市大气污染状况。  相似文献   

16.
2015—2017年天水市大气污染物变化特征及来源分析   总被引:1,自引:0,他引:1  
据天水市2015-2017年大气污染物(SO2、NO2、CO、O3、PM2.5和PM10)的监测数据及气象资料,分析了天水市大气污染物的浓度变化特征,并利用排放源清单和HYSPLIT模型对污染物来源进行了解析.结果表明:①天水市空气质量有所下降,总体优良率达84.9%.SO2、NO2、CO均达标,污染物以颗粒物和O3为主.②一次污染物SO2、NO2、CO、PM2.5和PM10浓度具有相似的季节变化和日变化特征,冬季最高,夏季最低,日变化呈早晚双峰型.二次污染物O3夏季浓度最高,冬季最低,日变化呈单峰型.③天水市空气质量主要受污染物的本地排放和外来输送的影响,本地民用和工业部门对SO2、CO、PM2.5和PM10的贡献最大,交通和工业部门对NOx的分担率最高,民用部门是CO的最大排放源;西北和东部气流是污染物外来的最主要输送路径.此外,污染物在城市大气中的稀释、扩散和转移也受当地气象因素(气温、降水、风向等)的影响.  相似文献   

17.
基于全国城市PM2.5达标约束的大气环境容量模拟   总被引:9,自引:0,他引:9  
基于第3代空气质量模型WRF-CAMx 和全国大气污染物排放清单,开发了以环境质量为约束的大气环境容量迭代算法,并以我国333个地级城市PM2.5年均浓度达到环境空气质量标准(GB3095-2012)为目标,模拟计算了全国31个省市区SO2、NOx、一次PM2.5及NH3的最大允许排放量.分析结果表明,以城市PM2.5年均浓度达标为约束,全国SO2、NOx、一次PM2.5和NH3的环境容量分别为1363.26×104,1258.48×104,619.04×104,627.71×104t.2010年全国实际SO2、NOx、一次PM2.5和NH3排放量分别超过环境容量的66%、81%、96%、52%.空气污染较严重的河南、河北、天津、安徽、山东及北京6省市4项污染物排放量均超过环境容量1倍以上,环境容量严重超载区域与PM2.5高污染地区具有显著的空间一致性.  相似文献   

18.
2015年12月北京市空气重污染过程分析及污染源排放变化   总被引:5,自引:8,他引:5  
2015年12月,北京市及周边地区连续多次出现重污染天气.在此期间,北京市空气重污染应急指挥部两次发布红色预警.为厘清该月重污染的发生过程、生消变化,测算了应急措施下的污染源排放变化情况,并采用数值模拟和地面观测相结合的分析方法,对重污染的形成原因进行初步分析,同时对应急措施的环境效果进行评估.结果表明:1虽然2015年12月北京市主要大气污染物排放量较去年同期有所下降,但排放强度仍然较大,是重污染过程的内因;气象扩散条件不利是重要的外因,地面风速弱,大气稳定度高,相对湿度高,边界层高度降低,源排放及气象因素共同导致了此轮重污染过程.2红色预警应急措施可实现污染物日排放强度减少36%左右,PM2.5浓度下降11%~21%,预警的应急措施不能扭转重污染的态势,但对于缓解PM2.5污染加重趋势有明显的效果.3在重污染天气下,污染物仍在大气中累积,应急措施最明显的效果发生在实施后的48~72 h后,因此建议在PM2.5浓度快速上升前36~48 h实施减排措施,从而对空气质量预报准确性提出更高的要求.  相似文献   

19.
天津市大气污染源排放清单的建立   总被引:40,自引:15,他引:25  
通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.  相似文献   

20.
分别应用参数本土化的NON-ROAD模型和生态环境部发布的《非道路移动源大气污染物排放清单编制技术指南》估算了新疆1993—2018年农业生产用拖拉机PM10、PM2.5、HC、NOx和CO等污染物排放清单.同时,结合NON-ROAD模型特性、排放清单和区域现状,从定量和定性2个维度剖析了2种排放清单编制方法的适应性和污染物排放演变态势.最后,基于3种不同方法对污染物排放的潜在影响因素进行分析.结果表明:①基于参数本土化的NON-ROAD模型在建立特定区域排放清单方面具有一定参考价值.②1993—2018年新疆农用拖拉机污染物排放呈现出平稳上升、波动、快速增长、平稳、下降等不同态势,总体上,1993—2017年污染物排放增加25156.69 t,但在2018年出现较大幅度下降,同时单位功率排放也明显下降,表明近年来采取的强有力排放控制措施在抑制大气污染物排放方面的成效明显.③2006年之后大中型拖拉机年均排放总量占比为70.9%,小型拖拉机年均排放占比为29.1%,短期内随着时间的推移两者的差距将越来越大,揭示大中型拖拉机是污染物排放控制的关键.④对污染物排放影响因素的定量分析结果发现,农业经济发展水平对区域污染物排放总量变化起决定性作用.本研究在建立污染物排放清单、污染物排放影响因素定量分析及区域污染物排放治理政策制定方面有一定参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号