首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Specific capacity data obtained from Well Construction reports which are available from USGS offices, can provide useful estimates of tranamissivity (T), and hydraulic conductivity (K), of an aquifer. The Chicot Aquifer in Louisiana is one of the largest sources of fresh ground water in North America. Hydrologic data collected for the Chicot Aquifer indicate that specific capacity tests can be used in estimating local and regional values for T and K, if the Cooper-Jacob equation for transient flow is used with proper corrections for well loss and partial penetration. Where full scale pumping test data are scarce, specific capacity test data that are adequately distributed spatially can be used to map changes in T and K values and can be summarized statistically to indicate applicable regional values. A computer program called “TGUESS” which is available from International Ground Water Modeling Center, Holcomb Research Institute, was used in this study. The contour maps for T and K values are prepared for different well depth intervals to avoid wide variation of values.  相似文献   

2.
Abstract: The hydrological simulation program – FORTRAN (HSPF) is a comprehensive watershed model that employs depth‐area‐volume‐flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross‐sections and reservoirs. An accurate FTABLE determination for a stream cross‐section site requires an accurate determination of mean flow depth, mean flow width, roughness coefficient, longitudinal bed slope, and length of stream reach. A method that uses regional regression equations to estimate mean flow depth, mean flow width, and roughness coefficient is presented herein. FTABLES generated by the proposed method (Alternative Method) and FTABLES generated by Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) were compared. As a result, the Alternative Method was judged to be an enhancement over the BASINS method. First, the Alternative Method employs a spatially variable roughness coefficient, whereas BASINS employs an arbitrarily selected spatially uniform roughness coefficient. Second, the Alternative Method uses mean flow width and mean flow depth estimated from regional regression equations whereas BASINS uses mean flow width and depth extracted from the National Hydrography Dataset (NHD). Third, the Alternative Method offers an option to use separate roughness coefficients for the in‐channel and floodplain sections of compound channels. Fourth, the Alternative Method has higher resolution in the sense that area, volume, and flow data are calculated at smaller depth intervals than the BASINS method. To test whether the Alternative Method enhances channel hydraulic representation over the BASINS method, comparisons of observed and simulated streamflow, flow velocity, and suspended sediment were made for four test watersheds. These comparisons revealed that the method used to estimate the FTABLE has little influence on hydrologic calibration, but greatly influences hydraulic and suspended sediment calibration. The hydrologic calibration results showed that observed versus simulated daily streamflow comparisons had Nash‐Sutcliffe efficiencies ranging from 0.50 to 0.61 and monthly comparisons had efficiencies ranging from 0.61 to 0.84. Comparisons of observed and simulated suspended sediments concentrations had model efficiencies ranging from 0.48 to 0.56 for the daily, and 0.28 to 0.70 for the monthly comparisons. The overall results of the hydrological, hydraulic, and suspended sediment concentration comparisons show that the Alternative Method yielded a relatively more accurate FTABLE than the BASINS method. This study concludes that hydraulic calibration enhances suspended sediment simulation performance, but even greater improvement in suspended sediment calibration can be achieved when hydrological simulation performance is improved. Any improvements in hydrological simulation performance are subject to improvements in the temporal and spatial representation of the precipitation data.  相似文献   

3.
Most groundwater modelers avoid using static heads measured from active production wells because they can introduce a bias into model calibration. However, in the deep confined Cambrian-Ordovician Sandstone Aquifer System in the Central Midcontinent of North America, dedicated observation wells are sparse and remote from areas of most concentrated pumping. As a result, in areas where drawdown is the greatest and modeling is most needed, only static heads from production wells are available for calibration. This paper evaluates two leading sources of discrepancies in using production well data, spatial and temporal structural error (S.E.). A simple Theis solution is used to evaluate the potential magnitude of spatial S.E. when calibrating a regional MODFLOW model with coarse cell resolution. Despite theoretical analyses indicating that spatial S.E. could be significant, statistical analysis of the model results suggests that temporal S.E. is dominant. Long (ranging over decades) or frequent (monthly) head datasets are key in understanding temporal S.E., to better capture water-level variability. In this study, the range in static head observations impacted estimates of the remaining time a well could extract water from the aquifer by 0.1 to 16.0 years. This uncertainty in future water supply is highly relevant to stakeholders and must be assessed in hydrographs depicting risk.  相似文献   

4.
ABSTRACT: Management of a regional ground water system to mitigate drought problems at the multi‐layered aquifer system in Collier County, Florida, is the main topic. This paper developed a feedforward control system that consists of system and control equations. The system equation, which forecasts ground water levels using the current measurements, was built based on the Kalman filter algorithm associated with a stochastic time series model. The role of the control equation is to estimate the pumping reduction rate during an anticipated drought. The control equation was built based on the empirical relationship between the change in ground water levels and the corresponding pumping requirement. The control system starts with forecasting one‐month‐ahead ground water head at each control point. The forecasted head is in turn used to calculate the deviation of ground water heads from the monthly target specified by a 2‐in‐10‐year frequency. When the forecasted water level is lower than the target, the control system computes spatially‐varied pumping reduction rates as a recommendation for ground water users. The proposed control system was tested using hypothetical droughts. The simulation result revealed that the estimated pumping reduction rates are highly variable in space, strongly supporting the idea of spatial forecasting and controlling of ground water levels as opposed to a lumped water use restriction method used previously in the model area.  相似文献   

5.
ABSTRACT: In projects involving ground water problems, dependence on the mathematical modeling of the ground water flow phenomena is inescapable. At present, two dimensional flow models, which require tremendous amounts of computer time and storage, are generally used. When such bulky models are used for planning purposes, the two requirements (computer time and storage) can severely limit the number of alternatives that can be considered. A simple quantity and quality simulation model is developed here which requires considerably less computer time and storage and gives reasonably accurate results. The model was applied to simulate a ground water basin in San Luis Rey River in Southern California. The results were compared with those obtained by a USGS model. It was found that the simple model gave results which were consistentaly within five percent of the USGS model results, while the requirements on computer time and storage were drastically reduced.  相似文献   

6.
ABSTRACT: Long term well hydrographs and estimated ground water levels derived from hydroclimatic and biological data were used to evaluate trends within the Upper Carbonate Aquifer (UCA) near Winnipeg, Canada, during the 20th Century. Ground water records from instruments have been kept since the early 1960s and are derived from piezometers in the overlying sediments and in open boreholes in the UCA. Some boreholes extend into an underlying Paleozoic carbonate sequence. Shallow well hydrographs show no obvious long term trends but do exhibit variations on the order of three to four years that are correlated with changes in annual temperature and precipitation at lags up to 24 months. Trends observed in deeper wells appear to be largely related to ground water usage patterns and show little correlation with climate over the past 35 years. Stepwise multiple regression modeled average annual hydraulic head in the shallow wells as a function of regional temperature, precipitation, and tree ring variables. Estimated hydraulic heads had a slightly greater range prior to the 1960s, most prominently during an interval of lowered ground water levels between 1930 and 1942. Regression results demonstrate that moisture sensitive tree ring data are viable predictors of past ground water levels and may be useful for studies of aquifers in regions that lack long, high quality precipitation records.  相似文献   

7.
ABSTRACT: In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.  相似文献   

8.
Channel dimensions are important input variables for many hydrologic models. As measurements of channel geometry are not available in most watersheds, they are often predicted using bankfull hydraulic geometry relationships. This study aims at improving existing equations that relate bankfull width, depth, and cross‐sectional area to drainage area (DA) without limiting their use to well‐gauged watersheds. We included seven additional variables in the equations that can be derived from data that are generally required by hydrologic models anyway and conducted several multiple regression analyses to identify the ideal combination of additional variables for nationwide and regional models for each Physiographic Division of the United States (U.S.). Results indicate that including the additional variables in the regression equations generally improves predictions considerably. The selection of relevant variables varies by Physiographic Division, but average annual precipitation (PCP) and temperature (TMP) were generally found to improve the models the most. Therefore, we recommend using regression equations with three independent variables (DA, PCP, and TMP) to predict bankfull channel dimensions for hydrologic models. Furthermore, we recommend using the regional equations for watersheds within regions from which data were used for model development, whereas in all other parts of the U.S. and the rest of the world, the nationwide equations should be given preference.  相似文献   

9.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   

10.
Mulvihill, Christiane I. and Barry P. Baldigo, 2012. Optimizing Bankfull Discharge and Hydraulic Geometry Relations for Streams in New York State. Journal of the American Water Resources Association (JAWRA) 48(3): 449-463. DOI: 10.1111/j.1752-1688.2011.00623.x Abstract: This study analyzes how various data stratification schemes can be used to optimize the accuracy and utility of regional hydraulic geometry (HG) models of bankfull discharge, width, depth, and cross-sectional area for streams in New York. Topographic surveys and discharge records from 281 cross sections at 82 gaging stations with drainage areas of 0.52-396 square miles were used to create log-log regressions of region-based relations between bankfull HG metrics and drainage area. The success with which regional models distinguished unique bankfull discharge and HG patterns was assessed by comparing each regional model to those for all other regions and a pooled statewide model. Gages were also stratified (grouped) by mean annual runoff (MAR), Rosgen stream type, and water-surface slope to test if these models were better predictors of HG to drainage area relations. Bankfull discharge models for Regions 4 and 7 were outside the 95% confidence interval bands of the statewide model, and bankfull width, depth, and cross-sectional area models for Region 3 differed significantly (p < 0.05) from those of other regions. This study found that statewide relations between drainage area and HG were strongest when data were stratified by hydrologic region, but that co-variable models could yield more accurate HG estimates in some local regional curve applications.  相似文献   

11.
ABSTRACT: The Floridan Aquifer is the primary source of water in the coastal area of Santa Rosa County, Florida. In order to optimize well field design and analyze aquifer stress problems, the USGS MODFLOW code (McDonald and Harbaugh, 1988) is applied to develop a numerical computer model of the aquifer. The Geographical Information System (GIS) is the primary tool used in the development of the model grid, performance of the modeling procedure, and model analysis. The GIS is used in generating multiple grids in which to simulate both regional scale and local scale flow. The grid topology is recorded in geographic coordinates which facilitates geo-referencing and orientation of the grid to base maps and data coyerages. The GIS allows data transfer from various coverages to the nodes of the block centered grid where hydrogeologic information is stored as attributes to the grid coverage. From this grid coverage, pertinent information is queried within the GIS environment and used to generate the input files for the MODFLOW simulation. After MODFLOW execution, simulated heads and drawdown are imported into the grid coverage where residual error and recharge rates can be calculated. Contoured surfaces are then created for selected data sets including simulated heads, drawdown, residual error, and recharge rates. Model calibration is conducted utilizing the GIS to generate and process data sets associated with model simulations.  相似文献   

12.
River channel geometry is an important input to hydraulic and hydrologic models. Traditional approaches to quantify river geometry have involved surveyed river cross sections, which cannot be extended to ungaged basins. In this paper, we describe a method for developing a synthetic rating curve to relate flow to water level in a stream reach based on reach‐averaged channel geometry properties developed using the Height above Nearest Drainage (HAND) method. HAND uses a digital elevation model (DEM) of the terrain and computes the elevation difference between each land surface cell and the stream bed cell to which it drains. Taking increments in water level in the stream, HAND defines the inundation zone and a water depth grid within this zone, and the channel characteristics are defined from this water depth grid. We apply our method to the Blanco River (Texas) and the Tar River (North Carolina) using 10‐m terrain data from the United States Geological Survey (USGS) 3D Elevation Program (3DEP) dataset. We evaluate the method's performance by comparing the reach‐average stage‐river geometry relationships and rating curves to those from calibrated Hydrologic Engineering Center's River Analysis System (HEC‐RAS) models and USGS gage observations. The results demonstrate that after some adjustment, the river geometry information and rating curves derived from HAND using national‐coverage datasets are comparable to those obtained from hydraulic models or gage measurements. We evaluate the inundation extent and show our approach is able to capture the majority of the Federal Emergency Management Agency (FEMA) 100‐year floodplain.  相似文献   

13.
Summary The Geological Survey in 1960 began a comprehensive study of the hydrology of the lower reaches of the main Colorado River valley from Davis Dam to the international boundary, and of certain adjacent areas that receive water from the river. The study includes an appraisal of the probable water supply available to the area, consumptive uses by crops, native vegetation, and evaporation, with greatest emphasis on the location and movement of ground water which may be available for development. Although final results of the study are not yet available, the objectives, scope, methods used, and some preliminary results are described.  相似文献   

14.
As withdrawals from deep compartmentalized aquifers increasingly exceed recharge throughout the western United States, conjunctive water use management alternatives have become an applied research priority. This study highlights both details and limitations of the role of irrigation canal seepage as groundwater recharge, revealing the regional limitations of canal seepage as a dependable source of recharge in overdrawn aquifers. A suite of geochemical indicators were used together with a numerical model to evaluate current and future management scenarios focused on recharge derived from seepage from a region‐wide irrigation canal system. Twenty‐five years of static groundwater level data were used to relate spatial trends determined using geochemistry and groundwater modeling with “on‐the‐ground” management practices, which vary based on acreage, crop, and irrigation scheduling. Increasing groundwater age determined using isotope analysis, and declines in potentiometric heads, each correlate with increasing distance from the canal reaches. Predictive modeling indicates that if pumping is gradually reduced, as has been suggested by management agencies, that recharge from canal seepage will be negligible by 2035 due to regional groundwater through‐flow and the pattern of potentiometric head recovery. Unfortunately, historic hydrographs suggest that under current groundwater development conditions most wells are not sustainable, irrespective of proximity to the canal.  相似文献   

15.
Despite increasing attention to management of headwater streams as sources of water, sediment, and wood to downstream rivers, the extent of headwater channels and perennial flow remain poorly known and inaccurately depicted on topographic maps and in digital hydrographic data. This study reports field mapping of channel head and perennial flow initiation locations in forested landscapes underlain by sandstone and basalt lithologies in Washington State, USA. Contributing source areas were delineated for each feature using a digital elevation model (DEM) as well as a Global Positioning System device in the field. Systematic source area–slope relationships described in other landscapes were not evident for channel heads in either lithology. In addition, substantial variability in DEM-derived source area sizes relative to field-delineated source areas indicates that in this area, identification of an area–slope relationship, should one even exist, would be difficult. However, channel heads and stream heads, here defined as the start of perennial flow, appear to be co-located within both of the lithologies, which together with lateral expansion and contraction of surface water around channel heads on a seasonal cycle in the basalt lithology, suggest a controlling influence of bedrock springs for that location. While management strategies for determining locations of channel heads and perennial flow initiation in comparable areas could assign standard source area sizes based on limited field data collection within that landscape, field-mapped source areas that support perennial flow are much smaller than recognized by current Washington State regulations.  相似文献   

16.
ABSTRACT: The U.S. Army Corps of Engineers conducted an assessment of Great Lakes water resources impacts under transient climate change scenarios. The integrated model linked empirical regional climate downscaling, hydrologic and hydraulic models, and water resource use sub-models. The water resource uses include hydropower, navigation, shoreline damages, and wetland area. The study is unique in that both steady-state 2°CO2 and transient global circulation model (GCM) scenarios were used and compared to each other. The results are consistent with other impact studies in that high scatter in regional climate among the GCM scenarios lead to high uncertainty in impacts. Nevertheless, the transient scenarios show that in the near-term (approximately 20 years) significant changes could occur. This result only adds to the urgency of creating more flexible and robust management of water resources uses.  相似文献   

17.
Abstract: The two main rivers of southeast Texas: Guadalupe and San Antonio have shown high temporal increase in bacteria concentration during the last decade. The SPAtially Referenced Regression On Watershed (SPARROW) attributes model, developed by the U.S. Geological Survey (USGS), has been applied to predict the fluxes and concentrations of contaminants in unmonitored streams and to identify the sources of these contaminants. This model identifies every reach as a basic network unit to distribute the sources, delivery, and attenuation factors. The model is data intensive and implements nonlinear regression to solve the parsimonious relations for describing various watershed processes. This study explored watershed and hydrological characteristics (land uses, precipitation, human and animal population, point sources, areal hydraulic load and drainage density, etc.) as the probable sources and delivery mechanisms of waterborne pathogens and their indicator (Escherichia coli [E. coli]) in the Guadalupe and San Antonio River basins. The effect of using various statistical indices for model selection on the final model’s ability to explain the various E. coli sources and transport processes was also analyzed.  相似文献   

18.
Under steady state conditions of flow, the seepage toward a single gravity well is governed by the Laplace Equation which may be written in terms of either the hydraulic head, the pressure head or the velocity potential. Although this equation is linear, the principle of superposition cannot be applied to sum up the individual effects in the case of a multiple gravity well system due to the variation of the flow domain under the effect of one or several wells. A method is presented allowing the use of the superposition principle in a restricted form. The superposition of the decrements of the base pressure heads than the initial heads before pumping is valid. Also the decrements in the areas of the pressure head diagrams across specific vertical sections than the original areas can be summed up together.  相似文献   

19.
This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.  相似文献   

20.
ABSTRACT: The Dakota aquifer, composed of the Dakota Sandstone and stratigraphically equivalent sandstone units of Cretaceous age, is the upper-most regional aquifer underlying the extensively developed High Plains aquifer of the midwestern United States. The concentration of dissolved solids in ground water of the Dakota aquifer ranges from less than 500 milligrams per liter in calcium bicarbonate type water in the eastern outcrop area to more than 100,000 milligrams per liter in sodium chloride type oilfield brine in the Denver Basin to the west. Preliminary maps showing the distribution of dissolved solids confirm the complex nature of the Dakota aquifer as inferred from stratigraphic and hydraulic evidence. Extensive vertical leakage through confining layers, local recharge at the truncated eastern boundary, and a barrier to recharge along the western edge of the Denver Basin are consistent with the distribution of hydraulic head and dissolved solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号