首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The purpose of this article is to discuss the importance of uncertainty analysis in water quality modeling, with an emphasis on the identification of the correct model specification. A wetland phosphorus retention model is used as an example to illustrate the procedure of using a filtering technique for model structure identification. Model structure identification is typically done through model parameter estimation. However, due to many sources of error in both model parameterization and observed variables and data, error-in-variable is often a problem. Therefore, it is not appropriate to use the least squares method for parameter estimation. Two alternative methods for parameter estimation are presented. The first method is the maximum likelihood estimator, which assumes independence of the observed response variable values. In anticipating the possible violation of the independence assumption, a second method, which coupled a maximum likelihood estimator and Kalman filter model, was presented. Furthermore, a Monte Carlo simulation algorithm is presented as a preliminary method for judging whether the model structure is appropriate or not.  相似文献   

2.
ABSTRACT: A major contaminant monitoring and modeling study is underway for Green Bay, Lake Michigan. Monitoring programs in support of contaminant modeling of large waterbodies, such as for Green Bay, are expensive and their extent is often limited by budget limitations, laboratory capacity, and logistic constraints. Therefore, it is imperative that available resources be used in the most efficient manner possible. This use, or allocation of resources, may be aided through the application of readily available models in the planning stages of projects. To aid in the planning effort for the Green Bay project, a workshop was held and studies designed to aid in the allocation of resources for a year-long intensive field study. Physical/chemical and food chain models were applied using historical data to aid in project planning by identifying processes having the greatest impact on the predictive capability of mass balance models. Studies were also conducted to estimate errors in computed tributary loadings and in-Bay concentrations and contaminant mass associated with different sampling strategies. The studies contributed to the overall project design, which was a collaborative effort with many participants involved in budgeting, field data collection, analysis, processing of data, quality assurance, data management and modeling activities.  相似文献   

3.
The groundwater/surface water interface (GWSWI) represents an important transition zone between groundwater and surface water environments that potentially changes the nature and flux of contaminants exchanged between the two systems. Identifying dominant and rate-limiting contaminant transformation processes is critically important for estimating contaminant fluxes and compositional changes across the GWSWI. A new, user-friendly, spreadsheet- and Visual Basic-based analytical screening tool that assists in evaluating the dominance of controlling kinetic processes across the GWSWI is presented. Based on contaminant properties, first-order processes that may play a significant role in solute transport/transformation are evaluated in terms of a ratio of process importance (Pi) that relates the process rate to the rate of fluid transfer. Besides possessing several useful compilations of contaminant and process data, the screening tool also includes 1-D analytical models that assist users in evaluating contaminant transport across the GWSWI. The tool currently applies to 29 organics and 10 inorganics of interest within the context of the GWSWI. Application of the new screening tool is demonstrated through an evaluation of natural attenuation at a site with trichloroethylene and 1,1,2,2-tetrachloroethane contaminated groundwater discharging into wetlands.  相似文献   

4.
ABSTRACT: This project analyzes suspended sediment flux through the upper Barataria basin in Louisiana during the winter season defined from November through April. The Barataria is a shallow coastal estuary located in southeastern Louisiana. The controls exerted by environmental parameters (such as wind or atmospheric pressure) in wetlands‐shallow bay ecosystems on transport of water and sediment were examined. Water samples were taken at a bayou (which serve as the inlet for flow to the estuary) on a regular basis. These samples were analyzed for total suspended solids and volatile suspended solids. Velocity, depth, temperature, salinity, conductivity, and meteorological measurements were all recorded at the time of each sampling. A multi‐parameter field probe was employed to continually monitor turbidity, water level, conductivity, and temperature during frontal events. These data were used in a regression analysis to examine the factors that drive carbon flux in the region. Investigations have determined that synoptic climate and prevailing weather conditions explain much of the variations in water levels, flow circulation patterns, salinity, and suspended sediment. Relatively small amounts of sediment appear to leave the estuary during normal tidal activity, but winter storm fronts result in significant fluxes of sediment in both up‐basin and down‐basin directions.  相似文献   

5.
ABSTRACT: Accurate prediction of hydrodynamics is of great importance to modeling contaminant transport and water quality in a river. Flow conditions are needed in estimating potential exposure contamination levels and the recovery time for a no-action alternative in contaminated sediments remediation. Considering highly meandering characteristics of the Buffalo River, New York, a three-dimensional hydrodynamic model was selected to route upstream flows through the 8-km river section with limited existing information based on the model's fully predictive capability and process-oriented feature. The model was employed to simulate changes in water depth and flow velocity with space and time in response to variation in flow rate and/or water surface elevation at boundaries for given bottom morphometry and initial conditions. Flow conditions of the river reach where historical flow data are not available were computed. A rating-curve approach was developed to meet continuous and event contaminant modeling needs. Rating curves (depth-discharge and velocity-discharge relationships) were constructed at selected stations from the 3-D hydrodynamic simulations of individual flow events. The curves were obtained as steady solutions to an unsteady problem. The rating-curve approach serves to link flow information provided by the hydrodynamic model to a contaminant transport model. With the approach, the linking problem resulting from incompatible model dimensions and grid sizes can be solved. The curves will be used to simulate sediment movement and to predict contaminant fate and transport in the river.  相似文献   

6.
Contaminated sediments are receiving increasing recognition around the world, leading to the development of various sediment quality indicators for assessment, management, remediation, and restoration efforts. Sediment chemistry represents an important indicator of ecosystem health, with the concentrations of contaminants of potential concern (COPCs) providing measurable characteristics for this indicator. The St. Louis River Area of Concern (AOC), located in the western arm of Lake Superior, provides a case study for how numerical sediment quality targets (SQTs) for the protection of sediment-dwelling organisms can be used to support the interpretation of sediment chemistry data. Two types of SQTs have been established for 33 COPCs in the St. Louis River AOC. The Level I SQTs define the concentrations of contaminants below which sediment toxicity is unlikely to occur, whereas the Level II SQTs represent the concentrations that, if exceeded, are likely to be associated with sediment toxicity. The numerical SQTs provide useful tools for making sediment management decisions, especially when considered as part of a weight-of-evidence approach that includes other sediment quality indicators, such as sediment contaminant chemistry and geochemical characteristics, sediment toxicity, and benthic macroinvertebrate community structure. The recommended applications of using the numerical SQTs in the St. Louis River AOC include: designing monitoring programs, interpreting sediment chemistry data, conducting ecological risk assessments, and developing site-specific sediment quality remediation targets for small, simple sites where adverse biological effects are likely. Other jurisdictions may benefit from using these recommended applications in their own sediment quality programs.  相似文献   

7.
8.
Water quality modeling has been shown to be a useful tool in strategic water quality management. The present study combines the Qual2K model with the HEC-RAS model to assess the water quality of a tidal river in northern Taiwan. The contaminant loadings of biochemical oxygen demand (BOD), ammonia nitrogen (NH3-N), total phosphorus (TP), and sediment oxygen demand (SOD) are utilized in the Qual2K simulation. The HEC-RAS model is used to: (i) estimate the hydraulic constants for atmospheric re-aeration constant calculation; and (ii) calculate the water level profile variation to account for concentration changes as a result of tidal effect. The results show that HEC-RAS-assisted Qual2K simulations taking tidal effect into consideration produce water quality indices that, in general, agree with the monitoring data of the river. Comparisons of simulations with different combinations of contaminant loadings demonstrate that BOD is the most import contaminant. Streeter-Phelps simulation (in combination with HEC-RAS) is also performed for comparison, and the results show excellent agreement with the observed data. This paper is the first report of the innovative use of a combination of the HEC-RAS model and the Qual2K model (or Streeter-Phelps equation) to simulate water quality in a tidal river. The combination is shown to provide an alternative for water quality simulation of a tidal river when available dynamic-monitoring data are insufficient to assess the tidal effect of the river.  相似文献   

9.
ABSTRACT: There is considerable potential for use of channel dimension data in planning-level models for resource and impact assessment. The channel dimension data is used to route flows and sediment through the basin. The cost of obtaining actual surveyed data for large watersheds is typically prohibitive. Predictive equations have been developed based on 674 stations from watersheds across the United States which encompass a wide variety of channel types and sizes. These equations were tested against an independent data set and found to be adequate for use in planning-level models. Future research is advocated which would include data from regions and stream types not included in this study.  相似文献   

10.
11.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

12.
ABSTRACT: In recent years, several approaches to hydrologic frequency analysis have been proposed that enable one to direct attention to that portion of an overall probability distribution that is of greatest interest. The majority of the studies have focused on the upper tail of a distribution for flood analyses, though the same ideas can be applied to low flows. This paper presents an evaluation of the performances of five different estimation methods that place an emphasis on fitting the lower tail of the lognormal distribution for estimation of the ten‐year low‐flow quantile. The methods compared include distributional truncation, MLE treatment of censored data, partial probability weighted moments, LL‐moments, and expected moments. It is concluded that while there are some differences among the alternative methods in terms of their biases and root mean square errors, no one method consistently performs better than the others, particularly with recognition that the underlying population distribution is unknown. Therefore, it seems perfectly legitimate to make a selection of a method on the basis other criteria, such as ease of use. It is also shown in this paper that the five alternative methods can perform about as well as, if not better than, an estimation strategy involving fitting the complete lognormal distribution using L‐moments.  相似文献   

13.
ABSTRACT: A method to establish maximum contaminant levels or nondegradation standards for toxic substances in water is described. The method described is based on statistical outlier procedures which distinguish ubiquitous background levels of toxic substances from those concentrations significantly greater than background. Because this approach utilizes environmental data, it can calculate an interim maximum contaminant level which can help protect the public until sufficient health effects data are available to establish human health based maximum contaminant levels.  相似文献   

14.
After Hurricane Katrina passed through the US Gulf Coast in August 2005, floodwaters covering New Orleans were pumped into Lake Pontchartrain as part of the rehabilitation process in order to make the city habitable again. The long-term consequences of this environmentally critical decision were difficult to assess at the time and were left to observation. In the aftermath of these natural disasters, and in cases of emergency, the proactive use of screening level models may prove to be an important factor in making appropriate decisions to identify cost effective and environmentally friendly mitigation solutions. In this paper, we propose such a model and demonstrate its use through the application of several hypothetical scenarios to examine the likely response of Lake Pontchartrain to the contaminant loading that were possibly in the New Orleans floodwaters. For this purpose, an unsteady-state fugacity model was developed in order to examine the environmental effects of contaminants with different physicochemical characteristics on Lake Pontchartrain. The three representative contaminants selected for this purpose are benzene, atrazine, and polychlorinated biphenyls (PCBs). The proposed approach yields continuous fugacity values for contaminants in the water, air, and sediment compartments of the lake system which are analogous to concentrations. Since contaminant data for the floodwaters are limited, an uncertainty analysis was also performed in this study. The effects of uncertainty in the model parameters were investigated through Monte Carlo analysis. Results indicate that the acceptable recovery of Lake Pontchartrain will require a long period of time. The computed time range for the levels of the three contaminants considered in this study to decrease to maximum contaminant levels (MCLs) is about 1 year to 68 years. The model can be implemented to assess the possible extent of damage inflicted by any storm event on the natural water resources of Southern Louisiana or similar environments elsewhere. Furthermore, the model developed can be used as a useful decision-making tool for planning and remediation in similar emergency situations by examining various potential contamination scenarios and their consequences.  相似文献   

15.
The morphological form of mixed sand and gravel beaches is distinct, and the process/response system and complex dynamics of these beaches are not well understood. Process response models developed for pure sand or gravel beaches cannot be directly applied to these beaches. The Canterbury Bight coastline is apparently abundantly supplied with sediments from large rivers and coastal alluvial cliffs, but a large part of this coastline is experiencing long-term erosion. Sediment budget models provide little evidence to suggest sediments are stored within this system. Current sediment budget models inadequately quantify and account for the processes responsible for the patterns of erosion and accretion of this coastline. We outline a new method to extrapolate from laboratory experiments to the field using a geographical information system approach to model sediment reduction susceptibility for the Canterbury Bight. Sediment samples from ten representative sites were tumbled in a concrete mixer for an equivalent distance of 40 km. From the textural mixture and weight loss over 40 km tumbling, we applied regression techniques to generate a predictive equation for Sediment Reduction Susceptibility (SRS). We used Inverse Distance Weighting (IDW) to extrapolate the results from fifty-five sites with data on textural sediment composition to field locations with no data along the Canterbury Bight, creating a continuous sediment reductions susceptibility surface. Isolines of regular SRS intervals were then derived from the continuous surface to create a contour map of sediment reductions susceptibility for the Canterbury Bight. Results highlighted the variability in SRS along this coastline.  相似文献   

16.
杨华 《四川环境》2004,23(1):45-47
以最大信息熵原理为理论基础的熵法估参方法,是一种具有严格物理和数学意义的新型参数估计方法,本文针对珠江广州河段主要污染物含量长年监测数据,对比熵法与传统方法矩法对四参数Г分布的估参结果,并以频率绝对离盖和最小为准则进行判定,结果表明,熵法估参结果与矩法总体上相当接近,且大部分样本的熵法估计参数优于矩法,在环境监测数据频率分析中具有实用性和推广价值。  相似文献   

17.
The stability of cohesive sediment deposits during a rare storm is a critical component in the evaluation of remedial options at a contaminated sediment site. Estimating scour depths during a rare storm, and the resulting contaminant concentrations in the surficial layer of the bed, is necessary for comparing the efficacy of various remedial alternatives. Evaluation of sediment stability is accomplished using sediment transport analyses that employ quantitative procedures. Qualitative analyses or conceptual models can be useful for developing and validating quantitative analysis tools; however, qualitative techniques alone generally are insufficient for conducting defensible remedial alternative evaluations. The level of analysis used for a specific site depends on data availability, required level of accuracy, and time and budget constraints. A tier 1 analysis involves the use of approximate equations to produce order-of-magnitude estimates of scour depths during a rare storm. The second tier of this analysis scheme employs the development and application of a sediment transport model to evaluate bed stability. State-of-the-science sediment transport models have been effectively used as management tools for evaluating remedial options at several contaminated sediment sites. It should not be presumed that rare storm events cause catastrophic impacts at the site under review. Two case studies demonstrate that a rare storm is not necessarily catastrophic; significant increases in surficial bed concentrations caused by reexposure of elevated concentrations buried at depth in the bed will not necessarily occur during a rare storm. However, it is important to note that sediment stability is site-specific.  相似文献   

18.
Arsenic remobilization in a shallow lake: the role of sediment resuspension   总被引:1,自引:0,他引:1  
Oxic resuspension occurs regularly in shallow lakes, yet its role as a mechanism for contaminant remobilization remains ill defined. This study investigated contaminant remobilization during sediment resuspension and determined whether changes in contaminant sediment partitioning reflected the mechanisms controlling remobilization. Arsenic-contaminated sediment from a shallow wetland was subjected to simulated resuspension under a range of differing initial pH conditions. The effect of resuspension on As partitioning was evaluated using a fractionation scheme targeting the dissolved, ion exchangeable, carbonate, organic, amorphous iron oxide, crystalline iron oxide, and apatite fractions. Rate investigations demonstrated that arsenic remobilization occurred on timescales similar to resuspension events, with concentrations reaching steady state within 24 h. The sediment also buffered slurry pH to 8.3 in experiments where the initial pH was between 4 and 10. This pH regulation was attributed to carbonate dissolution or acid-base equilibria of surface base functional groups, although iron oxide and organic matter dissolution did occur in experiments with an initial pH outside this range. Remobilization caused losses in arsenic associated with the ion exchangeable, organic, and amorphous iron fractions but changes in initial pH have a negligible effect on arsenic remobilization or partitioning within the well-buffered region. Resuspension released approximately 20% of the total sediment arsenic, although calculations indicated that a single resuspension event would not significantly change water column arsenic concentrations. While not conclusively proving the mechanisms of remobilization, fractionation gave valuable insight into the effect of sediment resuspension on contaminant remobilization.  相似文献   

19.
The Gunnison River in the Black Canyon of the Gunnison National Park (BCNP) near Montrose, Colorado is a mixed gravel and bedrock river with ephemeral side tributaries. Flow rates are controlled immediately upstream by a diversion tunnel and three reservoirs. The management of the hydraulic control structures has decreased low-frequency, high-stage flows, which are the dominant geomorphic force in bedrock channel systems. We developed a simple model to estimate the extent of sediment mobilization at a given flow in the BCNP and to evaluate changes in the extent and frequency of sediment mobilization for flow regimes before and after flow regulation in 1966. Our methodology provides a screening process for identifying and prioritizing areas in terms of sediment mobility criteria when more precise systematic field data are unavailable. The model uses the ratio between reach-averaged bed shear stress and critical shear stress to estimate when a particular grain size is mobilized for a given reach. We used aerial photography from 1992, digital elevation models, and field surveys to identify individual reaches and estimate reach-averaged hydraulic geometry. Pebble counts of talus and debris fan deposits were used to estimate regional colluvial grain-size distributions. Our results show that the frequency of flows mobilizing river bank sediment along a majority of the Gunnison River in the BCNP has significantly declined since 1966. The model results correspond well to those obtained from more detailed, site-specific field studies carried out by other investigators. Decreases in the frequency of significant sediment-mobilizing flows were more pronounced for regions within the BCNP where the channel gradient is lower. Implications of these results for management include increased risk of encroachment of vegetation on the active channel and long-term channel narrowing by colluvial deposits. It must be recognized that our methodology represents a screening of regional differences in sediment mobility. More precise estimates of hydraulic and sediment parameters would likely be required for dictating quantitative management objectives within the context of sediment mobility and sensitivity to changes in the flow regime.  相似文献   

20.
介绍了有源效率刻度法及实验室γ谱无源效率刻度系统(LabSOCS)在样品活度浓度分析中的原理,利用多型号低本底高纯锗γ谱仪,通过生态环境部辐射环境监测技术中心(下称技术中心)提供的沉降物考核样品,进行了两种分析方法的对比分析,对LabSOCS软件可靠性进行验证并对比不同型号探测器性能.两种方法所得核素活度浓度结果与技术...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号