首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ABSTRACT: While much is known about the hydrology of forested mountain catchments in the Pacific Northwest, important research questions remain. For example, the dynamics of storm precipitation amounts and the modeling of catchment outflows represent a continuing research need. Without an improved understanding of the spatial and temporal aspects of storm precipitation patterns, our ability to evaluate and improve physically-based hydrologic models is limited. From a practical perspective, tens of thousands of kilometers of access roads have been constructed across forested catchments of the Pacific Northwest. Yet, few forestry research programs focus on road drainage (e.g., ditches, culverts, fords). The few studies that address this issue indicate road drainage systems need to function effectively over a wide range of flow events and terrain conditions. In addition, historical forest practices associated with hillslopes and riparian systems have altered the character of many Pacific Northwest aquatic ecosystems. If restoration of these systems is to be effective, research efforts are needed to better understand the linkages between riparian forests, geomorphic processes, and hydrologic disturbance regimes.  相似文献   

2.
The Road Erosion and Delivery Index (READI) is a new geographic information system–based model to assess erosion and delivery of water and sediment from unpaved road networks to streams. READI quantifies the effectiveness of existing road surfacing and drain placements in reducing road sediment delivery and guides upgrades to optimize future reductions. Roads are draped on a digital elevation model and parsed into hydrologically distinct segments. Segments are further divided by engineered drainage structures. For each segment, a kinematic wave approximation generates runoff hydrographs for specified storms, with discharge directly to streams at road–stream crossings and onto overland‐flow plumes at other discharge points. Plumes are attenuated by soil infiltration, which limits their length, with delivery occurring if plumes intersect streams. Sediment production and sediment delivery can be calculated as a relative dimensionless index. READI predicts only a small proportion of new drains and new surfacing results in the majority of sediment delivery reductions. The model illustrates how the spatial relationships between road and stream networks, controlled by topography and network geometries, influence patterns of road–stream connectivity. READI was applied in seven northern California basins. The model was also applied in a recent burn area to examine how reduced hillslope infiltration can result in increased hydrologic connectivity and sediment delivery.  相似文献   

3.
Abstract: Unpaved road‐stream crossings increase sediment yields in streams and alter channel morphology and stability. Before restoration and sedimentation reduction strategies can be implemented, a priority listing of unpaved road‐stream crossings must be created. The objectives of this study were to develop a sedimentation risk index (SRI) for unpaved road‐stream crossings and to prioritize 125 sites in the Choctawhatchee watershed (southeastern Alabama) using this model. Field surveys involved qualitative and quantitative observations of 73 metrics related to waterway conditions, crossing structures, road approaches, and roadside soil erosion. The road‐stream crossing risk analyses involved elimination of candidate metrics based on redundancy, skewness, lack of data, professional judgment, lack of nonzero values, unbalanced box plots, and limited ranges of values. A final selection of 12 metrics formed the SRI and weighed factors involving soil erodibility, road sedimentation abatement features, and stream morphology alteration. The SRI was organized into narrative categories (excellent, good, fair, poor, and very poor) based on the distribution of scores. No excellent sites (scores ≥55) were found in this study, 17 (20.7%) were good (low sedimentation risk), 37 (45.1%) were fair (moderate sedimentation risk), 26 (31.7%) were poor (high sedimentation risk), and two (2.5%) were very poor (high sedimentation risk). There was no significant difference in SRI scores among crossing structure type (round culverts, box culverts, and bridges) (H = 4.31, df = 2, p = 0.058). A future study of the Choctawhatchee watershed involving the same study sites could assess the success of restoration plans and activities based on site score improvement or decline.  相似文献   

4.
Abstract: Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water‐mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two‐thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large‐scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free‐flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large‐scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream‐system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large‐scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.  相似文献   

5.
ABSTRACT: Hydrograph analysis of six streams on the south shore of Long Island indicates that eastward urbanization during the last three decades has significantly reduced base flow to streams. Before urbanization, roughly 95 percent of total annual stream flow on Long Island was base flow. In urbanized southwestern Nassau County, storm water sewerage, increased impervious surface area, and sanitary sewerage have reduced base flow to 20 percent of total stream flow. In an adjacent urbanized but unsewered area in southeastern Nassau County, base flow has decreased to 84 percent of total annual stream flow. In contrast, base flow in two streams in rural areas has remained virtually constant, averaging roughly 95 percent of total annual flow throughout the 1955-70 study period. Double-mass curve analysis of base flow as a percentage of total annual stream flow indicates that (1) changes in stream flow characteristics began in the early 1960's in the sewered area and in the late 1960's in the later urbanized, unsewered area, and (2) a new equilibrium has been established between the streams in the sewered area and the new hydrologic characteristics of their urbanized drainage basins.  相似文献   

6.
Turton, Donald J., Michael D. Smolen, and Elaine Stebler, 2009. Effectiveness of BMPs in Reducing Sediment From Unpaved Roads in the Stillwater Creek, Oklahoma Watershed. Journal of the American Water Resources Association (JAWRA) 45(6):1343‐1351. Abstract: Erosion from rural unpaved roads is thought to be an important source of sediment in sediment‐impaired streams in Oklahoma and other locations. However, no direct measurements of sediment yields from rural unpaved roads were previously available for Oklahoma. Four rural unpaved road segments in the Stillwater Creek Watershed were instrumented in a paired watershed design to measure sediment yields to streams before and after the installation of Best Management Practices (BMPs). One segment of each pair remained under current management to serve as a control. The second segment received BMPs after a 1‐year calibration period. One BMP consisted of widening the ditches, re‐shaping ditches and cutslopes, putting a proper crown on the road surface, and vegetating disturbed areas with grass. The other BMP consisted of creating a proper crown on the road bed, applying a geo‐synthetic fabric to the road bed and surfacing with 127 mm of crusher run gravel containing 12‐15% fines to serve as a binder. Road segment sediment yields for individual storms varied, depending on factors such as rainfall amount and intensity. During the pre‐BMP year, storm sediment yields ranged from 0 to 4.3 Mg on one pair of segments and from 0 to 2.8 Mg on the other. The storm sediment yields and annual yields were in the same order of magnitude as sediment yields from unpaved rural or forest roads reported in other studies. Sediment yields were significantly reduced on both segments by the installation of BMPs, approximately 80% on one segment pair and 20% on the other. The average sediment yield (across the four segments) for the pre‐BMP year was 138 Mg/ha or 120 Mg/km of road. By extrapolating these average yields across the 479 km of unpaved roads in the Stillwater Creek Watershed and comparing it to estimated sediment yields for other land uses obtained from other sources, we conclude that unpaved roads may contribute up to 35% of the total sediment load to Stillwater Creek.  相似文献   

7.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Ditches have been traditionally constructed to remove water from agricultural lands. Little attention has been placed on alternative ditch designs that are more stable and provide greater habitat diversity for wildlife and aquatic species. In 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to a two‐stage ditch (TSD) with small, adjacent floodplains to mimic a natural system. Cross section surveys, conducted pre‐ and post‐construction, generally indicate a stable channel with minor adjustments over time. Vegetation surveys showed differences in species composition and biomass between the slopes and the benches, with changes ongoing. Longitudinal surveys demonstrated a 12‐fold increase in depth variability. Fish habitat quality improved with well‐sorted gravel riffles and deeper pool habitat. The biological response to improved habitat quality was investigated using a Fish Index of Biological Integrity (FIBI). Our results show higher FIBI scores post‐construction with scores more similar to natural streams. In summary, the TSD demonstrated improvements in riparian and instream habitat quality and fish communities, which showed greater fish species richness, higher percentages of gravel spawning fish, and better FIBI scores. This type of management tool could benefit ditches in other regions where gradient and geology allow.  相似文献   

8.
Headwater streams are the primary sources of water in a drainage network and serve as a critical hydrologic link between the surrounding landscape and larger, downstream surface waters. Many states, including North Carolina, regulate activity in and near headwater streams for the protection of water quality and aquatic resources. A fundamental tool for regulatory management is an accurate representation of streams on a map. Limited resources preclude field mapping every headwater stream and its origin across a large region. It is more practical to develop a model for headwater streams based on a sample of field data that can then be extrapolated to a larger area of interest. The North Carolina Division of Water Quality has developed a cost‐effective method for modeling and mapping the location, length, and flow classification (intermittent and perennial) of headwater streams. We used a multiple logistic regression approach that combined field data and terrain derivatives for watersheds located in the Triassic Basins ecoregion. Field data were collected using a standard methodology for identifying headwater streams and origins. Terrain derivatives were generated from digital elevation models interpolated from bare‐earth Light Detection and Range data. Model accuracies greater than 80% were achieved in classifying stream presence and absence, stream length and perennial stream length, but were not as consistent in predicting intermittent stream length.  相似文献   

9.
ABSTRACT: We compared the recovery from abusive grazing of aquatic habitat due to different range management on two geomorphically similar rangeland streams in northwest Nevada. Managers excluded livestock from the Mahogany Creek watershed from 1976 to 1990 while allowing rotation of rest grazing on its tributary Summer Camp Creek. Bank stability, defined as the lack of apparent bank erosion or deposition, improved through the study period on both streams, but periodic grazing and flooding decreased stability more on Summer Camp Creek than flooding alone on Mahogany Creek. Pool quantity and quality on each stream decreased because of coarse woody debris removal and sediment deposition during a drought. Fine stream bottom sediments decreased five years after the removal of livestock, but sedimentation increased during low flows in both streams below road crossings. Tree cover increased 35 percent at both streams. Thus, recovery of stability and cover and decreased sedimentation are compatible with rotation of rest grazing on Summer Camp Creek. Width/depth ratio and gravel/cobble percent did not change because they are inherently stable in this stream type. Management activities such as coarse woody debris removal limited pool recover and road crossings increased sedimentation.  相似文献   

10.
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.  相似文献   

11.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Agricultural drainage ditches function to remove water quickly from farmed landscapes. Conventional ditch designs lack the form and function of natural stream systems and tend to be unstable and provide inadequate habitat. In October of 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to an alternative system with a two‐stage channel to investigate the improvements in water quality, stability, and habitat. Longitudinal surveys show a 12‐fold increase in the pool‐riffle formation. Cross‐sectional surveys show an average increase in bankfull width of approximately 10% and may be associated to an increased frequency in large storm events. The average increase in bankfull depth was estimated as 18% but is largely influenced by pool formation. Rosgen Stability Analyses show the channel to be highly stable and the banks at a low risk of erosion. The average bankfull recurrence interval was estimated to be approximately 0.30 years. Overall, the two‐stage ditch design demonstrates an increase in fluvial stability, creating a more consistent sediment budget, and increasing the frequency of important instream habitat features, making this best management practice a viable option for addressing issues of erosion, sediment imbalance, and poor habitat in agricultural drainage systems.  相似文献   

12.
ABSTRACT: Geomorphic characteristics and spatial frequency of ephemeral concentrated flow paths entering streamside management zones (SMZs) were evaluated to determine the efficiency of best management practices (BMPs) in preventing concentrated overland flow and associated sediment from reaching stream channels. Specifically, SMZs of 30 recently clearcut and site prepared commercial forestry units in the Georgia Piedmont were surveyed to find two types of locations: those where flow and/or sediment from the adjacent silvicultural site entered and moved through SMZs into stream channels (breakthroughs), and those where either flow and/or sediment entered SMZs without reaching stream channels or where no overland flow entered SMZs (successes). A total of 187 breakthroughs were identified on 3,773 total acres. On average, sites featured one breakthrough for every 20 acres of clearcut or site prepared area. The average hydrologic contributing area to a breakthrough was 1 acre. The percentage of the total clearcut or site prepared area contributing to breakthroughs was 5 percent. Approximately 50 percent of all breakthroughs occurred in areas of convergence (swales) and gullies, while 25 percent of all breakthroughs occurred where runoff from roads or skid trails was concentrated. Breakthroughs tended to occur in areas with large contributing area, low litter cover, and steep slopes. However, individually these variables did not differentiate well between breakthroughs and successes. The variables that discriminated best between successes and failures were the product of contributing area and percent bare ground, and the same variable multiplied by average slope. Fourteen percent of the breakthroughs traveled more than 100 feet through SMZs before reaching streams. Results imply that reduction of bare ground, better dispersal of road runoff, introduction of hydraulic resistance to likely flow paths, and targeted extensions of SMZ width may be warranted in improving BMPs on Piedmont forests.  相似文献   

13.
Road-related erosion was estimated by measuring 100 randomly located plots on a 180 km road network in the middle reach of R'dwood Creek in northwestern California. The estimated erosion ratn of 177 m3 km-1 was contrasted with two earlier studies in nearby parts of the same watershed. A sizable proportion of the great reduction in erosion from that reported in the earlier studies is attributed to changes in forest practice rules. Those changes have resulted in better placement and sizing of culverts and, especially, to less reliance on culverts to handle runoff from logging roads.  相似文献   

14.
Brooks, Robert T. and Elizabeth A. Colburn, 2011. Extent and Channel Morphology of Unmapped Headwater Stream Segments of the Quabbin Watershed, Massachusetts. Journal of the American Water Resources Association (JAWRA) 47(1):158‐168. DOI: 10.1111/j.1752‐1688.2010.00499.x Abstract: Effective regulatory protection and management of headwater resources depend on consistent and accurate identification and delineation of stream occurrence. Published maps and digital resources fail to represent the true occurrence and extent of headwater streams. This study assessed the accuracy of mapped origins of “blue‐line” streams depicted on U.S. Geological Survey topographic maps, and, if present, the morphological characteristics of unmapped stream segments. We identified 170 mapped stream origins on the Quabbin Reservoir watershed, Massachusetts. Of 30 mapped stream origins, we identified and examined 26 unmapped stream segments above 25, with an average length of 502 m. Twenty unmapped tributaries occurred on 10 of the 26 unmapped segments, with an average length of 127 m. Wetland reaches occurred more frequently and were larger on unmapped than on mapped stream segments. A significant and complex stream network occurs above most mapped stream origins. For the Quabbin watershed, we estimate that there are 85.8 km of unmapped stream upgradient of 314.5 km of mapped streams. Reliance on mapped stream networks for regulatory standards allows for the potential disturbance or even destruction of the unmapped stream resources. Jurisdictional regulations and guidelines should be revised so that the occurrence of streams should require field validation.  相似文献   

15.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   

16.
Assessing the passage of aquatic organisms through culvert road crossings has become increasingly common in efforts to restore stream habitat. Several federal and state agencies and local stakeholders have adopted assessment approaches based on literature-derived criteria for culvert impassability. However, criteria differ and are typically specific to larger-bodied fishes. In an analysis to prioritize culverts for remediation to benefit imperiled, small-bodied fishes in the Upper Coosa River system in the southeastern United States, we assessed the sensitivity of prioritization to the use of differing but plausible criteria for culvert impassability. Using measurements at 256 road crossings, we assessed culvert impassability using four alternative criteria sets represented in Bayesian belief networks. Two criteria sets scored culverts as either passable or impassable based on alternative thresholds of culvert characteristics (outlet elevation, baseflow water velocity). Two additional criteria sets incorporated uncertainty concerning ability of small-bodied fishes to pass through culverts and estimated a probability of culvert impassability. To prioritize culverts for remediation, we combined estimated culvert impassability with culvert position in the stream network relative to other barriers to compute prospective gain in connected stream habitat for the target fish species. Although four culverts ranked highly for remediation regardless of which criteria were used to assess impassability, other culverts differed widely in priority depending on criteria. Our results emphasize the value of explicitly incorporating uncertainty into criteria underlying remediation decisions. Comparing outcomes among alternative, plausible criteria may also help to identify research most needed to narrow management uncertainty.  相似文献   

17.
18.
ABSTRACT: Since the majority of road drainage points in western Washington and Oregon enter small, often ephemeral streams rather than large, fish-bearing waters, impact of road-surface sediment on biota in permanent streams depends, to a large extent, on transport through these small watercourses. A series of experimental additions of road-surface sediment was made to two ephemeral streams to examine the downstream transport of this material as a function of discharge and channel characteristics. These small streams were found to store large amounts of sediment washed from road surface. In no instance did either stream transport more than 45 percent of the added material to their mouths, distances of 95 and 125 m. Larger-sized sediment particles were delivered at a lower rate than finer material. Added sediment <0.063 mm in size was transported efficiently through the systems at all but the lowest flows tested. Material between 0.5 and 0.063 mm and from 2.0 to 0.5 mm in size were retained at progressively higher rates, with sediment in the coarser size category never exceeding a delivery of 10 percent of the added material. There were significant differences in the transport of sediment in the two larger size categories between the two streams. These differences were due to a much greater amount of woody debris in the stream with the lower delivery rates, which acted to trap and hold sediment, as well as a slightly longer and less steep channel.  相似文献   

19.
Castor canadensis ) management in Wyoming, USA, was sent to 5265 private-land managers and 124 public-land managers during 1993. The survey was developed in response to increasing interest in beaver management and beaver reintroduction possibilities. Private-land managers responding to the survey supplied information on 62,859 km2 of land area and 20,037 km of streams. Primary concerns about beaver damage centered on (in decreasing order of importance) blocked irrigation ditches, girdled timber, blocked culverts, and flooded pastures, roads, crops, and timber. Primary benefits that landowners perceive that beaver give them were, in order of importance, elevated water tables, increased riparian vegetation, and increased stock-watering opportunities. Public-land managers also listed these benefits and detriments among their top concerns for beaver. Over 45% of landowners with beaver on their property and all of the public-land managers displayed an interest in a beaver reintroduction program and in more proactive beaver management.  相似文献   

20.
ABSTRACT: An assessment of physical conditions in urban streams of the Puget Sound region, coupled with spatially explicit watershed characterizations, demonstrates the importance of spatial scale, drainage network connectivity, and longitudinal downstream trends when considering the effects of urbanization on streams. A rapid stream assessment technique and a multimetric index were used to describe the physical conditions of multiple reaches in four watersheds. Watersheds were characterized using geographic information system (GIS) derived landscape metrics that represent the magnitude of urbanization at three spatial scales and the connectivity of urban land. Physical conditions, as measured by the physical stream conditions index (PSCI), were best explained for the watersheds by two landscape metrics: quantity of intense and grassy urban land in the subwatershed and quantity of intense and grassy urban land within 500 m of the site (R2= 0.52, p > 0.0005). A multiple regression of PSCI with these metrics and an additional connectivity metric (proximity of a road crossing) provided the best model for the three urban watersheds (R2= 0.41, p > 0.0005). Analyses of longitudinal trends in PSCI within the three urban watersheds showed that conditions improved when a stream flowed through an intact riparian buffer with forest or wetland vegetation and without road crossings. Results demonstrate that information on spatial scale and patterns of urbanization is essential to understanding and successfully managing urban streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号