首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Contrary to the general trend of only a few actual trades occurring within point‐nonpoint source water quality trading programs in the United States, two trading projects in the Minnesota River Basin, created under the provisions of National Pollutant Discharge Elimination System (NPDES) permits, have generated five major trades and numerous smaller ones. In this paper, these two projects are described to illustrate their origins, implementation, and results. It was found that several factors contributed to the relatively high number of trades in these projects, including the offsetting nature of the projects (hence a fixed number of credits that the point sources were required to obtain), readily available information on potential nonpoint source trading partners, and an effectively internal trading scheme used by one of the two projects. It was also found that long term structural pollution control measures, such as streambank stabilization, offered substantial cost savings over point source controls. Estimates of transaction costs showed that the total costs of the trading projects were increased by at least 35 percent after transaction costs were taken into account. Evidence also showed that in addition to pollution reduction, these two trading projects brought other benefits to the watershed, such as helping balance environmental protection and regional economic growth.  相似文献   

2.
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems.  相似文献   

3.
Models for pollutant runoff can be useful in water quality management planning if appropriately structured for the problem at hand. Accordingly, a “top-down” approach is proposed for the examination of extant pollutant runoff models. The approach consists of the identification of objectives and attributes that reflect the needs of planners and decision makers when these models are used for water quality management planning. Ideally, the attributes should concern the effect of model information on improved decision making and the cost of model application. Practical difficulties with the first attribute necessitates substitution of surrogate attributes reflecting model appropriateness, resolution, and uncertainty. Common pollutant runoff models, in particular export coefficients and hydrology-driven simulation models, are found to have serious weaknesses on some of the attribute scales. The “top-down” approach leads to a set of desirable pollutant runoff model attributes; alternate modeling techniques are thus examined in order to identify promising future directions for model development. The focus of this examination is phosphorus, due to its importance in the eutrophication of surface waters. Models for both sediment-attached and dissolved phosphorus are considered. Among the conclusions is the belief that the partial contributing area concept can yield an effective yet simple simulation despite the variable and complex nature of runoff.  相似文献   

4.
ABSTRACT: Evaluation of the non-point source pollutant load entering a lake from multiple tributaries requires either that all tributaries be monitored or that some extrapolation method be used to estimate loads originating in areas not monitored. Unmonitored areas include not only watersheds of tributaries that are not monitored, but also portions of a monitored tributary's drainage basin downstream from the monitoring site and areas of direct drainage. Significant portions of large lake drainage basins are often not monitored, and loads for these areas are often estimated by extrapolation. Six simple extrapolation procedures were evaluated by using them to estimate loads for areas that had been monitored and comparing the estimated loads with the monitored loads. Three approaches were based on inter-basin ratios of area, C-factor, and discharge. The other approaches used regression relationships between concentration and flow to estimate concentrations for the unmonitored basin. The ratio approaches generally were more reliable than the regression approaches. However, extrapolation by any method tested was not very precise. Some methods also were biased when applied to watersheds of a size different than the monitored one. Extrapolation by any of these methods would compromise the precision of the lake-wide load estimate, if the unmonitored area were a significant part of the entire basin.  相似文献   

5.
ABSTRACT: A model for estimating seasonal fecal coliform concentrations in the Tchefuncte River as a function of river discharge was developed. Data on fecal coliform concentration were obtained from the Louisiana Department of Health and Hospitals and were available for a period of 15 years (1975 through 1992) from three locations. Stream flow data were obtained from a gaging station of the U. S. Geological Survey at Folsom, Louisiana. These data were available for 49 years (1943 through 1991). The climate of the area is characterized by different precipitation/runoff mechanisms for the summer and winter seasons. The division for seasons used in this analysis was May through October (summer season), and November through April (winter season). Because of the combined effects of climatic mechanisms causing precipitation and the seasonal variation of evapotranspiration, runoff is greater in the winter season resulting in higher fecal coliform counts in the Tchefuncte River. Statistical analysis revealed a statistically significant relationship between fecal coliform concentration and discharge for each season, at each of three sites on the Tchefuncte River.  相似文献   

6.
ABSTRACT: Forest management activities may substantially alter the quality of water draining forests, and are regulated as nonpoint sources of pollution. Important impacts have been documented, in some cases, for undesirable changes in stream temperature and concentrations of dissolved oxygen, nitrate-N, and suspended sediments. We present a comprehensive summary of North American studies that have examined the impacts of forest practices on each of these parameters of water quality. In most cases, retention of forested buffer strips along streams prevents unacceptable increases in stream temperatures. Current practices do not typically involve addition of large quantities of fine organic material to streams, and depletion of streamwater oxygen is not a problem; however, sedimentation of gravel streambeds may reduce oxygen diffusion into spawning beds in some cases. Concentrations of nitrate-N typically increase substantially after forest harvesting and fertilization, but only a few cases have resulted in concentrations approaching the drinking-water standard of 10 mg of nitrate-NIL. Road construction and harvesting increase suspended sediment concentrations in streamwater, with highly variable results among regions in North America. The use of best management practices usually prevents unacceptable increases in sediment concentrations, but exceptionally large responses (especially in relation to intense storms) are not unusual.  相似文献   

7.
ABSTRACT: A stochastic programming framework is developed to evaluate the economic implications of reliability criteria and multiple effluent controls on nonpoint source pollution. An integrated watershed simulation model is used to generate probability distributions for agricultural effluents in surface and ground water resulting from agricultural practices. Results from the planning model indicate that reliability and multiple effluent constraints significantly increase the cost of nonpoint controls but the effects vary by control alternative. The analysis indicates that an evaluation of multiple water quality objectives can be an important planning tool for designing nonpoint source controls for innovative programs to promote cost-effective water quality regulation.  相似文献   

8.
Abstract: Computer simulation models are used extensively for the development of total maximum daily loads (TMDLs). Specifically, the Hydrological Simulation Program‐FORTRAN (HSPF) is used in Virginia for the development of TMDLs for bacteria impairments. HSPF estimates discharge from a reach using function tables (FTABLES). The FTABLE relates stream stage, surface area, and volume to discharge from a reach. In this study, five FTABLE estimation methods were assessed by comparing their effect on various simulation outputs. Four “field‐based” methods used detailed cross‐sectional data collected via site surveys. A fifth “digital‐based” method used digital elevation data in combination with the Natural Resources Conservation Service Regional Hydraulic Geometry Curves. Sets of FTABLEs created using each method were used in simulations of instream bacteria concentration for a Virginia watershed. Several statistics relating to instream bacteria including long‐term average concentration, die‐off, and the violation rate of Virginia’s bacteria criterion were compared. The pair‐wise Student’s t‐test was used for the comparison. The HSPF simulations that used FTABLES estimated from digitally based data consistently produced significantly higher long‐term average instream fecal bacteria concentrations, significantly lower instream fecal bacteria die‐off, which is related to differences in residence time in the streams, and significantly higher water quality criterion violation rates.  相似文献   

9.
    
We present a conceptual framework that relates agricultural best management practice (BMP) effectiveness with dominant hydrological flow paths to improve nonpoint source (NPS) pollution management. We use the framework to analyze plot, field and watershed scale published studies on BMP effectiveness to develop transferable recommendations for BMP selection and placement at the watershed scale. The framework is based on the location of the restrictive layer in the soil profile and distinguishes three hydrologic land types. Hydrologic land type A has the restrictive layer at the surface and BMPs that increase infiltration are effective. In land type B1, the surface soil has an infiltration rate greater than the prevailing precipitation intensity, but there is a shallow restrictive layer causing lateral flow and saturation excess overland flow. Few structural practices are effective for these land types, but pollutant source management plans can significantly reduce pollutant loading. Hydrologic land type B2 has deep, well‐draining soils without restrictive layers that transport pollutants to groundwater via percolation. Practices that increased pollutant residence time in the mixing layer or increased plant water uptake were found as the most effective BMPs in B2 land types. Matching BMPs to the appropriate land type allows for better targeting of hydrologically sensitive areas within a watershed, and potentially more significant reductions of NPS pollutant loading.  相似文献   

10.
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts.  相似文献   

11.
    
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

12.
    
A multi-tier approach for agricultural watershed management has been proposed. The approach involves identification of a watershed management issue/problem, selection or development of simple conceptual model suitable for the exploration of the issue/problem identified and appropriate to the database available, and application of the model the address the identified issue/problem. The procedure is repeated by increasing the complexity in the conceptual model until the identified issue/problem has been addressed satisfactorily. An application of the procedure to an example watershed in southern Ontario conditions is shown. The application example has revealed that for identification of temporal pattern of runoff and sediment loads a simple conceptual model is adequate. For identification of spatial location of the sediment source areas and for the development of a monitoring program for the evaluation of remedial strategies a more complex distributed agricultural watershed model is necessary.  相似文献   

13.
O’Grady, Dennis, 2011. Sociopolitical Conditions for Successful Water Quality Trading in the South Nation River Watershed, Ontario, Canada. Journal of the American Water Resources Association (JAWRA) 47(1):39‐51. DOI: 10.1111/j.1752‐1688.2010.00511.x Abstract: The South Nation River watershed has a regulated water quality trading program. Legally, wastewater dischargers must not discharge any increased loading of phosphorus (P) into receiving waters. New wastewater systems are now choosing trading instead of traditional P removal technology, and point source dischargers are buying P credits from rural landowners, primarily farmers. These credits are generated by constructing nonpoint source pollution control measures. Mathematical formulae are used to calculate the credits of P removed by each measure. A successful trading program requires several conditions, including community agreement, legislative backing, credit and cost certainty, simplified delivery and verification, written instruments, and legal liability protection. South Nation Conservation, a community‐based watershed organization, is the broker handling the transactions for these P credits. The program is run by a multi‐stakeholder committee, and all project field visits are done by farmers and not paid professionals. An independent evaluation showed higher opinions for the broker and regulatory agency, and most farmers were willing to, or had already, recommended the program to other farmers.  相似文献   

14.
ABSTRACT: Linear programming is applied to identify the least cost strategy for reaching politically specified phosphorus and total suspended solids reduction targets for the Fox-Wolf river basin in Northeast Wisconsin. The programming model uses data collected on annualized unit reduction costs associated with five categories of sources of phosphorus and total suspended solids discharge in each of the 41 sub-watersheds in the basin to determine the least cost management strategy. Results indicate that: (1) cost-effective nutrient reduction requires careful selection of geographic areas and source categories to address throughout the watershed; (2) agricultural sources are the most cost-effective to address in the basin; and (3) care should be exercised in setting nutrient reduction targets, given that there are likely to be significantly increasing marginal costs of nutrient reduction; the model predicts that lowering the most restrictive target by 33 percent would cut reduction expenditures by about 75 percent. Policy implications of the model include support for the investigation and potential development of institutional arrangements that enable cost-effective nutrient reduction activities to occur, such as the creation of an agency with authority over a given watershed, coordinated watershed management activities, or nutrient trading programs.  相似文献   

15.
ABSTRACT: Source control costs for deep percolation emissions from irrigated agriculture are analyzed using a farm-level model. Crop area, irrigation system and applied water are chosen to maximize the net benefits of agricultural production while accounting for the environmental damages and disposal costs of those emissions. Deep percolation is progressively reduced as environmental and disposal costs are increased. This occurs primarily through the adoption of more efficient irrigation technology and reductions in applied water for a given technology Higher surface water prices, such as through irrigation reform and constrained surface supplies, are additionally considered in light of the drainage problem, as are the effects, both short- and long-term, on ground water use.  相似文献   

16.
    
Causes of variation between loads estimated using alternative calculation methods and their repeatability were investigated using 20 years of daily flow and monthly concentration samples for 77 rivers in New Zealand. Loads of dissolved and total nitrogen and phosphorus were calculated using the Ratio, L5, and L7 methods. Estimates of loads and their precision associated with short‐term records of 5, 10, and 15 years were simulated by subsampling. The representativeness of the short‐term loads was quantified as the standard deviation of the 20 realizations. The L7 method generally produced more realistic loads with the highest precision and representativeness. Differences between load estimates were shown to be associated with poor agreement between the data and the underlying model. The best method was shown to depend on the match between the model and functional and distributional characteristics of the data, rather than on the contaminant. Short‐term load estimates poorly represented the long‐term load estimate, and deviations frequently exceeded estimated imprecision. The results highlight there is no single preferred load calculation method, the inadvisability of “unsupervised” load estimation and the importance of inspecting concentration‐flow, unit load‐flow plots and regression residuals. Regulatory authorities should be aware that the precision of loads estimated from monthly data are likely to be “optimistic” with respect to the actual repeatability of load estimates.  相似文献   

17.
    
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

18.
    
ABSTRACT: The Truckee River is a vitally important water source for eastern California and western Nevada. It runs 100 miles from Lake Tahoe to Pyramid Lake in the Nevada desert and serves urban populations in greater Reno-Sparks and agricultural users in three Nevada counties. In the 1980s and 1990s, a number of state and local groups initiated projects which, taken collectively, have accomplished much to improve watershed management on the Truckee River. However, the task of writing a management plan for the entire watershed has not yet been undertaken. Key players in state, federal and local government agencies have instead chosen to focus specific improvement efforts on more manageable, achievable goals. The projects currently underway include a new agreement on reservoir operation, restoration of high priority sub-watersheds, public education and involvement, water conservation education, and water resource planning for the major urban population centers. The approach which has been adopted on the Truckee River continues to evolve as more and more people take an interest in the river's future. The many positive projects underway on the watershed are evaluated in terms of how well they meet the definition of the ambitious water resources strategy, “integrated watershed management.”  相似文献   

19.
ABSTRACT: The Black River, a tributary of the Chehalis River in western Washington State, has a history of widespread low dissolved oxygen (DO), anoxia in some locations, and fish kills. As part of a Total Maximum Daily Load (TMDL) study, environmental data were collected during two summer dry seasons and simulations were conducted with the WASP5 model to assess the effect of biochemical oxygen demand ( BOD ), ammonia, and nutrient loads on DO in the Black River. DO levels were below the State water quality regulatory criterion of 8.0 mg/L in almost all locations during the study. The slow middle reach of the river showed stratified conditions, with anoxia in some of the deepest pools. Based on model simulations, DO was found to still fall below the 8.0 mg/L criterion in the entire mainstem under “natural” conditions, and eutrophication was identified as a potential problem in the middle reach. A TMDL was proposed for BOD and ammonia that would prevent significant degradation of DO in the Black River. To prevent eutrophic conditions in the Black River, a TMDL for total phosphorus was proposed that establishes a protective criterion of 0.05 mg/L for the middle river during the dry low-flow season.  相似文献   

20.
Abstract: Total Maximum Daily Load (TMDL) implementation generates benefits and costs from water quality improvements, which are rarely quantified. This analysis examines a TMDL written to address bacteria and aquatic‐life‐use impairments on Abrams and Opequon Creeks in Virginia. Benefits were estimated using a contingent valuation survey of local residents. Costs were based on the number and type of best management practices (BMPs) necessary to achieve TMDL pollution reduction goals. BMPs were quantified using watershed‐scale water quality simulation models (Generalized Watershed Loading Function and Hydrological Simulation Program‐FORTRAN). Based on our projections, the costs to achieve TMDL induced pollution reduction goals outweigh the estimated benefits. Benefit‐cost ratios ranged between 0.1 and 0.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号