首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Watershed planning groups and action agencies seek to understand how lake water quality responds to changes in watershed management. This study developed and demonstrated the applicability of an integrated modeling approach for providing this information. An integrated model linking watershed conditions to water-quality of the receiving lake incorporated the following components: (1) an event-based AGNPS model to estimate watershed pollutant losses; (2) annualization of AGNPS results to produce annual lake pollutant loadings; (3) a base flow separation package, SAM, to estimate base flow; (4) estimates of nutrients in base flow and point sources; and (5) linkage of watershed loadings directly to EUTROMOD lake water quality algorithms. Results are presented for Melvern Lake, a 28-km2 multipurpose reservoir with a 900-km2 agricultural watershed in east central Kansas. Reasonable estimates of current lake quality were attained using an average phosphorus availability factor of 31 percent to calibrate model results to measured in-lake phosphorus. Comparison of a range of possible scenarios, including all cropland changed to no-till (best case) and all CRP and good-condition grasslands changed to cropland (worst case), indicated only a (4 percent change for in-lake phosphorus and a (2 percent change for chlorophyll a. These results indicated that this watershed is not sensitive to projected changes in land use and management.  相似文献   

2.
    
ABSTRACT: Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1, 25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year; 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987–1990.  相似文献   

3.
ABSTRACT: The objective of this study was to evaluate the effectiveness of various land-use practices upon the production of nonpoint source pollutants from small agricultural watersheds in Northern Virginia. Pollutant production at each watershed was determined by individual monitoring stations. Data analysis consisted of a determination of the site specific pollutant yield for similar watersheds subjected to differing crop management approaches. These collected data were then compared to those generated by a parametric, event model developed for this investigation. This synthetic data base was used to eliminate or reduce errors resulting from monitoring site differences and to extend the collected data for additional comparisons.  相似文献   

4.
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time.  相似文献   

5.
    
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale.  相似文献   

6.
    
ABSTRACT: This paper illustrates a method of using a hydrologic/water quality model to analyze alternative management practices and recommend best management practices (BMPs) to reduce nitrate-nitrogen (NO3--N) leaching losses. The study area for this research is Tipton, an agriculturally intensive area in southwest Oklahoma. We used Erosion Productivity Impact Calculator (EPIC), a field-scale hydrologic/water quality model, to analyze alternative agricultural management practices. The model was first validated using observed data from a cotton demonstration experiment conducted in the Tipton area. Following that, EPIC was used to simulate fertilizer response curves for cotton and wheat crops under irrigated and dryland conditions. From the fertilizer response functions (N-uptake and N-leaching), we established an optimum fertilizer application rate for each crop. Individual crop performances were then simulated at optimum fertilizer application rates and crop rotations for the Tipton area, which were selected based on three criteria: (a) minimum amount of NO3--N leached, (b) minimum concentration of NO3--N leached, and (c) maximum utilization of NO3--M. Further we illustrate that by considering residual N from alfalfa as a credit to the following crop and crediting NO3--N present in the irrigation water, it is possible to reduce further NO3--N loss without affecting crop yield.  相似文献   

7.
    
ABSTRACT: Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground‐water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground‐water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land‐use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection.  相似文献   

8.
    
ABSTRACT: Controlling agricultural nonpoint source pollution from livestock grazing is a necessary step to improving the water quality of the nation's streams. The goal of enhanced stream water quality will most likely result from the implementation of an integrated system of best management practices (BMPs) linked with stream hydraulic and geomorphic characteristics. However, a grazing BMP system is often developed with the concept that BMPs will function independently from interactions among controls, climatic regions, and the multifaceted functions exhibited by streams. This paper examines the peer reviewed literature pertaining to grazing BMPs commonly implemented in the southern humid region of the United States to ascertain effects of BMPs on stream water quality. Results indicate that the most extensive BMP research efforts occurred in the western and midwestern U.S. While numerous studies documented the negative impacts of grazing on stream health, few actually examined the success of BMPs for mitigating these effects. Even fewer studies provided the necessary information to enable the reader to determine the efficacy of a comprehensive systems approach integrating multiple BMPs with pre‐BMP and post‐BMP geomorphic conditions. Perhaps grazing BMP research should begin incorporating geomorphic information about the streams with the goal of achieving sustainable stream water quality.  相似文献   

9.
    
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   

10.
Abstract: Total Maximum Daily Load (TMDL) implementation generates benefits and costs from water quality improvements, which are rarely quantified. This analysis examines a TMDL written to address bacteria and aquatic‐life‐use impairments on Abrams and Opequon Creeks in Virginia. Benefits were estimated using a contingent valuation survey of local residents. Costs were based on the number and type of best management practices (BMPs) necessary to achieve TMDL pollution reduction goals. BMPs were quantified using watershed‐scale water quality simulation models (Generalized Watershed Loading Function and Hydrological Simulation Program‐FORTRAN). Based on our projections, the costs to achieve TMDL induced pollution reduction goals outweigh the estimated benefits. Benefit‐cost ratios ranged between 0.1 and 0.3.  相似文献   

11.
    
ABSTRACT: Regression models were developed for estimating stream concentrations of the herbicides alachlor, atrazine, cyanazine, metolachior, and trilluralin from use‐intensity data and watershed characteristics. Concentrations were determined from samples collected from 45 streams throughout the United States during 1993 to 1995 as part of the U.S. Geological Survey's National Water‐Quality Assessment (NAWQA). Separate regression models were developed for each of six percentiles (10th, 25th, 50th, 75th, 90th, 95th) of the annual distribution of stream concentrations and for the annual time‐weighted mean concentration. Estimates for the individual percentiles can be combined to provide an estimate of the annual distribution of concentrations for a given stream. Agricultural use of the herbicide in the watershed was a significant predictor in nearly all of the models. Several hydrologic and soil parameters also were useful in explaining the variability in concentrations of herbicides among the streams. Most of the regression models developed for estimation of concentration percentiles and annual mean concentrations accounted for 50 percent to 90 percent of the variability among streams. Predicted concentrations were nearly always within an order of magnitude of the measured concentrations for the model‐development streams, and predicted concentration distributions reasonably matched the actual distributions in most cases. Results from application of the models to streams not included in the model development data set are encouraging, but further validation of the regression approach described in this paper is needed.  相似文献   

12.
    
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   

13.
    
We present a conceptual framework that relates agricultural best management practice (BMP) effectiveness with dominant hydrological flow paths to improve nonpoint source (NPS) pollution management. We use the framework to analyze plot, field and watershed scale published studies on BMP effectiveness to develop transferable recommendations for BMP selection and placement at the watershed scale. The framework is based on the location of the restrictive layer in the soil profile and distinguishes three hydrologic land types. Hydrologic land type A has the restrictive layer at the surface and BMPs that increase infiltration are effective. In land type B1, the surface soil has an infiltration rate greater than the prevailing precipitation intensity, but there is a shallow restrictive layer causing lateral flow and saturation excess overland flow. Few structural practices are effective for these land types, but pollutant source management plans can significantly reduce pollutant loading. Hydrologic land type B2 has deep, well‐draining soils without restrictive layers that transport pollutants to groundwater via percolation. Practices that increased pollutant residence time in the mixing layer or increased plant water uptake were found as the most effective BMPs in B2 land types. Matching BMPs to the appropriate land type allows for better targeting of hydrologically sensitive areas within a watershed, and potentially more significant reductions of NPS pollutant loading.  相似文献   

14.
    
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

15.
ABSTRACT: Areas of low topographic relief have low water-table gradients and make the direction of movement of contaminants from land fills in the ground water difficult to predict from regional gradients alone. The landfill, nearby free-flowing ditches or canals, variations in hydraulic conductivity, and the influence of nearby pumping wells can all affect the direction of flow. In low-gradient areas the concepts of “upgradient” and “downgradient” are less useful in planning the location of monitoring wells than in areas of higher relief. Low-relief areas also may be affected by the discharge of mineralized water from deeper aquifers, naturally or through irrigation, which can mask geochemical surveys intended to detect landfill leachate. Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7×10?-4 to 5×10?-4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.  相似文献   

16.
    
ABSTRACT: CREAMS was applied to a field-sized watershed planted to cotton in the Limestone Valley region of northern Alabama. The field was cultivated for three years with conventional tillage (CvT) followed by three years of conservation tillage (CsT). CREAMS is composed of three components: hydrology, erosion, and chemistry. Surface runoff and losses of sediment, N and P were simulated and results were compared with the observed data from the watershed. Curve numbers recommended in the CREAMS user's guide were not adequate for the watershed conditions. The hydrology submodel improved runoff simulation from CvT and CsT when field-data based curve numbers were used. The erosion submodel demonstrated that CsT reduced sediment loss more than CvT, even though CsT had higher runoff than CvT. The nutrient submodel based on the simulated runoff and sediment underpredicted N loss for both CvT and CsT. This submodel, however, accurately predicted P loss for CvT, but underpredicted for CsT (50 percent lower than the observed). The results of CREAMS simulation generally matched the observed order of magnitude for higher runoff, lower sediment, and higher N and P losses from CsT than from CvT.  相似文献   

17.
    
This paper presents key challenges in modeling water quality processes of riparian ecosystems: How can the spatial and temporal extent of water and solute mixing in the riparian zone be modeled? What level of model complexity is justified? How can processes at the riparian scale be quantified? How can the impact of riparian ecosystems be determined at the watershed scale? Flexible models need to be introduced that can simulate varying levels of hillslope‐riparian mixing dictated by topography, upland and riparian depths, and moisture conditions. Model simulations need to account for storm event peak flow conditions when upland solute loadings may either bypass or overwhelm the riparian zone. Model complexity should be dictated by the level of detail in measured data. Model algorithms need to be developed using new macro‐scale and meso‐scale experiments that capture process dynamics at the hillslope or landscape scales. Monte Carlo simulations should be an integral part of model simulations and rigorous tests that go beyond simple time series, and point‐output comparisons need to be introduced. The impact of riparian zones on watershed‐scale water quality can be assessed by performing simulations for representative hillsloperiparian scenarios.  相似文献   

18.
An economic analysis of nonpoint source pollution management was conducted for the Nansemond River and Chuckatuck Creek watersheds in Southeast Virginia. The potential effects of alternative public policies on farm income, land use, and pollution loadings were investigated. Regulatory programs could have quite different impacts depending on which pollutant is targeted. Cost-share rates greater than 50 percent would have little additional effect on pollution from crop enterprises, but would reduce pollution from livestock  相似文献   

19.
    
Data from seven Management Systems Evaluation Areas (MSEA) were used to test the sensitivity of a leaching model, Pesticide Root Zone Model-2, to a variety of hydrologic settings in the Midwest. Atrazine leaching was simulated because it was prevalent in the MSEA studies and is frequently detected in the region's groundwater. Short-term simulations used site specific soil and chemical parameters. Generalized simulations used data avail. able from regional soil databases and standardized variables. Accurate short-term simulations were precluded by lack of antecedent atrazine concentrations in the soil profile and water, suggesting that simulations using data for less than five years underestimate atrazine leaching. The seven sites were ranked in order of atrazine detection frequency (concentration > 0.2 μg L-1) in soil water at 2 m depth in simulations. The rank order of the sites based on long-term simulations were similar to the ranks of sites based on atrazine detection frequency from groundwater monitoring. Simulations with Map Unit Use File (MUUF) soils data were more highly correlated with ranks of observed atrazine detection frequencies than were short-term simulations using site-specific soil data. Simulations using the MIJUIF data for soil parameters were sufficiently similarity to observed atrazine detection to allow the credible use of regional soils data for simulating leaching with PRZM-2 in a variety of Midwest soil and hydrologic conditions. This is encouraging for regional modeling efforts because soil parameters are among the most critical for operating PRZM-2 and many other leaching models.  相似文献   

20.
    
ABSTRACT: Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photo-degradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号