首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Marine macroalgae need carbon-concentrating mechanisms because they have only limited access to CO2 in their natural environment. Previous studies have shown that one important strategy common to many algae is the activity of periplasmic carbonic anhydrases that catalyse the dehydration of HCO3- into CO2. The latter can then cross the plasma membrane by passive diffusion. We hypothesised that an active (energy-consuming) mechanism might also be involved in the membrane transport of CO2, as is the case in a number of microalgae. Coccotylus truncatus was chosen as a model organism for this study because it belongs to a group of algae that usually lack direct HCO3- uptake: sublittoral red algae. The method used to study carbon uptake was pH drift of the seawater medium surrounding the algae in a closed vessel, with and without the addition of specific inhibitors or proton buffers. Measured parameters included pH, total inorganic carbon and alkalinity of the seawater medium. Our results suggest that, in C. truncatus, periplasmic carbonic anhydrase as well as H+ extrusion, probably driven by a vanadate-sensitive P-type H+-ATPase (proton pump), are involved in CO2 uptake. No direct uptake of HCO3- was discovered. This paper also presents data on the buffer capacity of several proton buffers and the carbon-uptake inhibitors acetazolamide, 4,4'-diisothiocyano-stilbene-2,2'-disulfonate (DIDS) and orthovanadate in Baltic Sea water with a salinity of 6.5 psu.  相似文献   

2.
The availability of different forms of nitrogen in coastal and estuarine waters may be important in determining the abundance and productivity of different phytoplankton species. Although urea has been shown to contribute as much as 50% of the nitrogen for phytoplankton nutrition, relatively little is known of the activity and expression of urease in phytoplankton. Using an in vitro enzyme assay, urease activities were examined in laboratory cultures of three species: Aureococcus anophagefferens Hargraves et Sieburth, Prorocentrum minimum (Pavillard) Schiller, and Thalassiosira weissflogii (Grunow) Fryxell et Hasle. Cultures of P. minimum and T. weissflogii were grown on three nitrogen sources (NO3m, NH4+, and urea), while A. anophagefferens was grown only on NO3m and urea. Urease was found to be constitutive in all cultures, but activity varied with growth rate and assay temperature for the different cultures. For A. anophagefferens, urease activity varied positively with growth rate regardless of the N source, while for P. minimum, urease activity varied positively with growth rate only for cultures grown on urea and NH4+. In contrast, for T. weissflogii, activity did not vary with growth rate for any of the N sources. For all species, urease activity increased with assay temperature, but with different apparent temperature optima. For A. anophagefferens, in vitro activity increased from near 0-30°C, and remained stable to 50°C, while for P. minimum, increased in vitro activity was noted from near 0-20°C, but constant activity was observed between 20°C and 50°C. For T. weissfloggii, while activity also increased from 0°C to 20°C, subsequent decreases were noted when temperature was elevated above 20°C. Urease activity had a half-saturation constant of 120-165 wg atom N lу in all three species. On both an hourly and daily basis, urease activity in A. anophagefferens exceeded nitrogen demand for growth. In P. minimum, urease activity on an hourly basis matched the nitrogen demand, but was less than the demand on a daily basis. For T. weissflogii, urease activity was always less than the nitrogen demand. These patterns in urease activity in three different species demonstrate that while apparently constitutive, the regulation of activity was substantially different in the diatom. These differences in the physiological regulation of urease activity, as well as other enzymes, may play a role in their ecological success in different environments.  相似文献   

3.
Stable oxygen and carbon isotope profiles ('18Oskeletal and '13Cskeletal), taken along the direction of growth from the umbo to the shell margin in shells of the pinnid Pinna nobilis, were used to reconstruct sea surface temperatures (SST) in the south-east Mediterranean and ontogenetic records of metabolic CO2 incorporation. Comparison of the seasonal cycle of SST, predicted from the '18Oskeletal record of a small (young) rapidly growing pinnid and temperature measured with a continuous in situ recorder showed that P. nobilis calcifies under isotopic equilibrium with surrounding seawater, thus indicating that P. nobilis shells can be used as a reliable predictor of SST. A 10-year SST record for the south-east Mediterranean was reconstructed from the shell profiles of four pinnid shells of different sizes and ages collected in 1995 and 1996. Reliable resolution of the seasonal SST could only be achieved during the first 4 years of shell growth. As the pinnids grew older, the temperature record was poorly resolved because the shell growth had diminished with age, resulting in time-averaging of the record. The amplitude of the generated seasonal temperature cycle compared favourably (DŽ°C) with a long-term temperature record from northern Mediterranean waters. Clear seasonal cycles in '13Cskeletal were observed with an amplitude of ~1.0‰, similar to the calculated seasonal changes in '13C of seawater (0.6‰) overlying seagrass meadows. An ontogenetic trend towards less positive '13Cskeletal values was too large to be attributed to any decrease in '13C in seawater resulting from the invasion of anthropogenic CO2. It is suggested that the temporal changes of '13Cskeletal are due to incorporation of respiratory CO2 into the extrapallial fluid and reflect changes in the metabolic activity of the pinnid rather than changes in the isotopic composition of dissolved inorganic carbon within the surrounding seawater.  相似文献   

4.
K. Hollertz 《Marine Biology》2002,140(5):959-969
This study of the burrowing heart urchin Brissopsis lyrifera includes measurements on feeding and food selection, ingestion rate, absorption efficiency, ventilation and respiration. B. lyrifera regulated feeding depth, ingestion rate and absorption efficiency in relation to food source. When food was added to the top layer of sediment, B. lyrifera burrowed closer to the surface and ingested mainly enriched surface material, whereas it burrowed deeper and ingested deep-seated sediment in the controls. In non-enriched sediment, the feeding rate was 0.04 g sediment DW h-1 ind.-1, and, in macro- and microalga-enriched sediment the feeding rate was 0.06 and 0.08 g sediment DW h-1 ind.-1, respectively. Absorption efficiency of TOC was about 43% in non-enriched sediment and in microalga-enriched sediment, but was significantly lower (34%) in macroalga-enriched sediment. Absorption efficiency of N varied between 48% and 55%, and was independent of food source. B. lyrifera feed selectively, enriching the gut TOC content about 2-fold and N content about 2.5-fold. The C/N ratio was therefore lower within the gut compared to the surrounding sediment, while the faecal C/N ratio was almost equal to the surrounding sediment. The faeces were, however, slightly richer in TOC and N compared to the surrounding sediment. For 3-5 cm long B. lyrifera, water current rate varied between 4 and 24 ml water h-1, with a mean of 11 ml h-1. Mean respiration rate was 205 µl O2 h-1 ind.-1. The water current rate was not sufficient for B. lyrifera to sustain itself by filter feeding only. However, organic-rich particles from the surface are suggested to be an important contribution to the diet. A carbon budget was calculated for B. lyrifera from measured values of consumption, absorption efficiency and respiration, in order to estimate annual production of B. lyrifera. Compared to literature values, growth was overestimated about tenfold in the budget. A large proportion of the absorbed carbon was suggested to leave the animal as dissolved carbon, through mucus production or through anaerobic pathways, either by the heart urchin or by micro-organisms in the gut.  相似文献   

5.
The subtidal crab Cancer pagurus (L.) experiences involuntary periods of emersion associated with practices used in their marketing and distribution. During 24 h emersion, impaired gill function caused an increase of circulating total ammonia (TA=NH3+NH4+) of 0.35 mmol TA l-1 (167%). The oxygen-binding characteristics of the haemocyanin of C. pagurus were examined at 10°C in the presence of total ammonia (0.2-1.0 mmol TA l-1). The haemocyanin-oxygen affinity was decreased in the presence of TA ((logP50/(log[TA]=0.16). Emersion induced significant acidosis and elevated circulating levels of haemolymph TA, lactate and urate, but all had returned to normal levels within 24 h of re-immersion. The accumulation of haemocyanin-modulating substances during 24 h emersion compensated partially (40%) for the effect of the acidosis, but the net effect of the emersion period was a significant decrease in oxygen affinity, corresponding to an increase of P50 (10°C ) from 1.24 kPa (immersed) to 1.96 kPa (24 h emersion). The implications of the findings are considered in terms of the effects and adaptations to emersion.  相似文献   

6.
Biomass, photosynthesis and growth of the large, perennial brown alga Laminaria saccharina (L.) Lamour. were examined along a depth gradient in a high-arctic fjord, Young Sound, NE Greenland (74°18'N; 20°14'W), in order to evaluate how well the species is adapted to the extreme climatic conditions. The area is covered by up to 1.6-m-thick ice during 10 months of the year, and bottom water temperature is <0°C all year round. L. saccharina occurred from 2.5 m depth to a lower depth limit of about 20 m receiving 0.7% of surface irradiance. Specimen density and biomass were low, likely, because of heavy ice scouring in shallow water and intensive feeding activity from walruses in deeper areas. The largest specimens were >4 m long and older than 4 years. In contrast to temperate stands of L. saccharina, old leaf blades (2-3 years old) remained attached to the new blades. The old tissues maintained their photosynthetic capacity thereby contributing importantly to algal carbon balance. The photosynthetic characteristics of new tissues reflected a high capacity for adaptation to different light regimes. At low light under ice, or in deep water, the chlorophyll a content and photosynthetic efficiency (!) were high, while light compensation (Ec) and saturation (Ek) points were low. An Ec of 2.0 µmol photons m-2 s-1 under ice allowed photosynthesis to almost balance, and sometimes exceed, respiratory costs during the period with thick ice cover but high surface irradiance, from April through July. Rates of respiration were lower than usually found for macroalgae. Annual elongation rates of leaf blades (70-90 cm) were only slightly lower than for temperate L. saccharina, but specific growth rates (0.48-0.58 year-1) were substantially lower, because the old blades remained attached. L. saccharina comprised between 5% and 10% of total macroalgal biomass in the area, and the annual contribution to primary production was only between 0.1 and 1.6 g C m-2 year-1.  相似文献   

7.
D. Julian  M. Chang  J. Judd  A. Arp 《Marine Biology》2001,139(1):163-173
We examined burrow irrigation activity by the mudflat worm Urechis caupo in response to suspended food, ambient hypoxia (down to 3.3 kPa PO2), hydrogen sulfide exposure (up to 100 µmol l-1), and short-term temperature change (range 10-22°C). In normoxic, nutrient-free water at 14°C, O2 consumption ( [(M)\dot]O2 ) \left( {\dot M{\rm O}_2 } \right) was 45 nmol min-1 g-1, water flow rate ( [(V)\dot]W ) \left( {\dot V_{\rm W} } \right) was 27 ml min-1 (0.66 ml min-1 g-1), frequency of peristaltic waves (FP) was 2.6 contractions min-1, stroke volume (SV) was 11 ml, and O2 extraction coefficient (EO2) was 0.27. Adding suspended food to the burrow water occasionally elicited stereotypical feeding behavior but had no effect on any measured variables during nonfeeding periods. Hypoxia greatly decreased [(M)\dot]O2 \dot M{\rm O}_2 (75% reduction at 3.3 kPa PO2) but did not affect [(V)\dot]W \dot V_{\rm W} , FP, SV, or EO2. Sulfide at 50 µmol l-1 or less had no effect on burrow irrigation activity, whereas 100 µmol l-1 sulfide decreased [(V)\dot]W \dot V_{\rm W} by 58% and FP by 50% but had no effect on SV. Temperature strongly affected [(V)\dot]W \dot V_{\rm W} (Q10 of 1.9 from 10°C to 22°C). We propose that U. caupo's ability to live in the hypoxic, sulfidic mud of productive mudflat environments, combined with its very efficient mucous net, allows it to process much less water for feeding than other suspension-feeding invertebrates. This, in turn, necessitates an efficient O2 extraction mechanism, which is provided by the water lung activity of U. caupo's unique hindgut.  相似文献   

8.
W. Fitt  C. Cook 《Marine Biology》2001,139(3):507-517
The availability of solid food (Artemia nauplii) and dissolved inorganic nutrients (ammonium, nitrate, phosphate) to the shallow-water marine hydroid Myrionema amboinense was manipulated for 1-8 days in order to investigate their role in the growth of intracellular symbiotic dinoflagellates (zooxanthellae) of the genus Symbiodinium. Symbionts from hydroids collected from the field or maintained under laboratory conditions (25°C, 12 h:12 h light:dark cycle, 80 µE m-2 s-1 fluorescent lighting) always exhibited a single peak in mitotic index (MI) at dawn. Symbionts in freshly collected field animals had an MI peak of about 15%. Symbiotic dinoflagellates in hydroids fed Artemia nauplii twice daily in the laboratory maintained this dawn peak of MI between 10% and 15%, but in the absence of feeding or added inorganic nutrients, this peak declined to less than 1% within 2-4 days. In contrast, when hydroids were placed in solutions containing ammonium (20 µM NH4Cl), nitrate (10 µM NaNO3), and a combination of ammonium and phosphate (2 µM Na2HPO4) immediately after collection, the algal MI remained between 5% and 15% for 4-7 days; the addition of 2 µM phosphate did not increase MI relative to unfed rates. When unfed animals were placed in dissolved nitrogen or fed Artemia, the symbiont MI increased from <1% to 10-17% within 2-3 days; P alone had no effect. However, the increase resulting from added inorganic nutrients was temporary, lasting only 5-7 days. These observations suggest that algal division in the host is maintained indefinitely in the field or by feeding particulate foods twice daily in the laboratory, but the addition of inorganic nutrients alone (ammonium, nitrate and ammonium/phosphate) appeared to support the completion of a maximum of one additional round of cell division. Nutrients required for continued growth and division of symbiotic dinoflagellates are linked to host feeding and host growth; without external food, neither host nor symbiont continue to grow. The same phenomenon is seen in zooxanthellate anemones, clams and corals, where total numbers of symbionts appear to be linked to changes in host-tissue biomass (protein), achieving relatively stable densities in M. amboinense, corals and other cnidarian symbioses, depending on their local environmental conditions. The results of the present study help explain the cellular responses of algal symbionts in reef-dwelling invertebrates to additions of dissolved inorganic nutrients to coral-reef ecosystems.  相似文献   

9.
Pigment contents, proteins and net photosynthesis were investigated in fully developed leaf of 1-year-old seedlings of six mangroves (Bruguiera gymnorrhiza, Rhizophora apiculata) and mangrove associates (Caesalpinia bonduc, Cerbera manghas, Derris heterophylla, Thespesia populnea), collected from Bhitarkanika, located on the east coast of India. Large variations in the photosynthetic rates (PN) among the six species were observed, ranging from 10.16 µmol CO2 m-2 s-1 in C. bonduc to 15.28 µmol CO2 m-2 s-1 in R. apiculata. The total leaf protein content ranged from 12.09 mg g-1 dry wt in T. populnea to 51.89 mg g-1 dry wt in B. gymnorrhiza. The chlorophyll a/b ratio was typically about 3.0 in all the studied species, except C. bonduc (2.8). Photosynthetic rates and chl a/b ratio in the leaves were found to be correlated. Analysis of chlorophyll and xanthophyll spectra suggested: (1) variations in different forms and amounts of carotenes as well as xanthophylls and (2) the presence of high amounts of near-UV-absorbing substances in leaves, particularly in the two mangroves (B. gymnorrhiza, R. apiculata) and a mangrove associate (T. populnea), which appears to be an adaptive feature. Estimation of the chl a/b ratios in isolated thylakoids yielded a low value of 1.8 for R. apiculata and >2.6 for other species. The total protein/chlorophyll ratios in thylakoids varied considerably from 3.14 (D. heterophylla) to 10.88 (T. populnea) among the mangrove associates and from 16.09 to 18.88 between the members of the Rhizophoraceae. The chlorophyll/carotenoid ratios in thylakoids of the six species were more or less similar. The absorption spectra for washed thylakoids of C. manghas and D. heterophylla exhibited absorption characteristics typical for C3-plant thylakoids. However, thylakoids isolated from R. apiculata, B. gymnorrhiza, C. bonduc and T. populnea exhibited an unusual increase in absorption in the blue region (380-410 nm) of the absorption spectrum. The presence of high-absorbing (in the short-wavelength, near-UV region) pigments appears to be closely associated with the thylakoids in R. apiculata and T. populnea. Our results, therefore, suggest a wide range of variation, not only in protein and pigment contents of photosynthetic tissues, but also in the spectral characteristics and composition of the pigments in mangrove species. An understanding of the nature of these pigments in mangroves and their associates, under their natural conditions and especially in relation to eco-physiological adaptations, is necessary, not only in relation to conservation, but also to allow propagation under different salinity conditions.  相似文献   

10.
The influence of oxygen concentration on total and basal metabolism, scope of activity, drag force and duration of jerks, time spent swimming and energy cost of locomotion in Moina micrura Hellich females cultured under hypo- and normoxia was investigated. Scope of activity (Ql) of hemoglobin-rich red individuals (Ma) acclimated to hypoxia depended less upon oxygen concentration than that of non-acclimated, pale individuals (Mna). Within the range 10-0.3 mg O2 l-1 Ql decreased 4.4-fold in Ma and 62.5-fold in Mna. In both Ma and Mna the integral drag force of antenna fell from 0.22ǂ.07 to 0.12ǂ.04 dyn (1 dyn=1·10-5 N), the duration of jerks increased from 0.06ǂ.01 to 0.1ǂ.02 s in the range from ~2.0 mg O2 l-1 to sublethal oxygen concentrations. At 0.7-0.8 mg O2 l-1 Mna stopped filtration and increased time spent swimming. In contrast, even under more severe hypoxia (~0.2 mg O2 l-1), Ma maintained their filtering activity using energy (up to 80% of total metabolism) achieved due to increased oxygen capacity of the blood. Separating locomotion and feeding functions, M. micrura can spend less energy for swimming and use its energy budget more plastically under changing environmental conditions.  相似文献   

11.
Although the ichthyotoxic mechanism of Chattonella marina is still unknown, several lines of evidence suggest that the reactive oxygen species (ROS), such as superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (·OH), produced by C. marina are involved in the mortality of fish exposed to this flagellate. Recently, we found that the cell-free supernatant prepared from C. marina, which is considered to contain the glycocalyx, showed NADPH-dependent O2- generation. In this study, we prepared antiserum against the crude glycocalyx of C. marina. Using indirect immunofluorescence, it was confirmed that the antiserum specifically reacted with C. marina cells. In addition to C. marina, the antiserum also reacted with other raphidophycean flagellates such as Heterosigma akashiwo, Olisthodiscus luteus, and Fibrocapsa japonica, whereas no reactivity was observed against six other flagellate species tested. These results suggest that raphidophycean flagellates have common epitopes recognized by the antiserum. Interestingly, immunohistochemical analysis of paraformaldehyde-fixed gill lamellae from yellowtail exposed to C. marina revealed that the antiserum stained the surface of gill lamellae, while no such staining pattern was observed in control gill lamellae. These results suggest that the glycocalyx may be discharged when C. marina cells are inhaled into the fishes' mouths and then come into contact with the gill surface. Based on the present results, together with our previous findings, we propose that continuous accumulation of the discharged glycocalyx on the gill surface occurs during C. marina exposure, which may be responsible for the ROS-mediated severe gill tissue damage leading to fish death.  相似文献   

12.
C. Lowe 《Marine Biology》2001,139(3):447-453
Oxygen consumption of juvenile scalloped hammerhead sharks, Sphyrna lewini, was measured in a Brett-type flume (volume=635 l) to quantify metabolic rates over a range of aerobic swimming speeds and water temperatures. Oxygen consumption (log transformed) increased at a linear rate with increases in tailbeat frequency and swimming speed. Estimates of standard metabolic rate ranged between 161 mg O2 kg-1 h-1 at 21°C and 203 mg O2 kg-1 h-1 at 29°C (mean-SD: 189ᆣ mg O2 kg-1 h-1 at 26°C). Total metabolic rates ranged from 275 mg O2 kg-1 h-1 at swimming speeds of 0.5 body lengths per second (L s-1) to a maximum aerobic metabolic rate of 501 mg O2 kg-1 h-1 at 1.4 L s-1. Net cost of transport was highest at slower swimming speeds (0.5-0.6 L s-1) and was lowest between 0.75 and 0.9 L s-1. Therefore, these sharks are most energy efficient at swimming speeds between 0.75 and 0.9 L s-1. These data indicate that tailbeat frequency and swimming speed can be used as predictors of metabolic rate of free-swimming juvenile hammerhead sharks.  相似文献   

13.
Oxygen consumption of individual larvae of the Antarctic sea-star Odontaster validus was measured during the 50-day period following fertilisation. Values ranged from 0.76 pmol O2 h-1 for one specimen at the coeloblastula stage to 77.6 pmol O2 h-1 for one bipinnaria larva. At 0°C the mean oxygen consumption rate of an individual larva increased from 10.9 pmol O2 h-1 (standard error of the mean, SEM, 0.13) for a gastrula larva, 13 days post-fertilisation, to 25.4 pmol O2 h-1 (SEM 3.5) at the bipinnaria stage (50 days post-fertilisation). Gastrulae reared at -0.5°C did not have significantly different oxygen consumption rates between days 13 and 45 post-fertilisation (mean=11.4 pmol O2 h-1). Individual metabolic rates were highly variable, covering more than a 40-fold range. At 2°C gastrula oxygen consumption was on average 45% higher (17.35 pmol O2 h-1), giving a Q10 temperature effect of 4.4. For bipinnaria, mean oxygen consumption in 2°C larvae (31.4 pmol O2 h-1) was not significantly different from that in larvae at -0.5°C, suggesting bipinnaria metabolism may be less sensitive to temperature change than earlier stages. At 2°C the bipinnaria stage was reached at 30-35 days compared with 45-50 days at 0°C, giving a Q10 of 4.5 for temperature effects on development. The method here used a new, highly sensitive micro-respirometry method that is inexpensive and straightforward in design. Individual larvae of O. validus were held in 35- to 50-µl respirometers. These larvae have very low metabolic rates, and published work on such organisms have utilised at least 25 individuals per chamber. The oxygen content of the respirometers was measured using a 25-µl sample injected into a couloximeter. Oxygen consumption rates down to -1 pmol h-1 can be detected. Under optimum conditions oxygen consumption of a single larva of -4 pmol O2 h-1 was measured with an accuracy of ᆨ%. Values of ~15 pmol h-1 could routinely be measured with this accuracy. This method would allow oxygen consumption to be evaluated in individual field-caught larvae of most marine ectotherms.  相似文献   

14.
Summary. Stable isotope feeding studies using [1,2-13C2]-sodium acetate have demonstrated that 2,6-dimethyl-5-heptenal (1), a putative defensive allomone, is made by the Dendronotid nudibranch Melibe leonina via de novo biosynthesis.  相似文献   

15.
We conducted experiments to determine the effect of the increasing ultrasonic/radio transmitter weight on the routine metabolic rate of sea bass. We measured the oxygen consumption (MO2) of fish tagged externally with a dummy transmitter made of a hollow pipe, the weight of which was adjusted with lead to represent in water 0, 1 and 4% (Rtf) of the animal weight. We then developed a theoretical model to estimate, for a given fish size, the range of added weight that fish can compensate for through swimbladder regulation. When RtfБ%, MO2 of untagged and tagged fish did not differ significantly. However, when Rtf reached 4%, fish that carried a tag incurred a significant elevation of oxygen consumption, which represented 28% of their total useable power (or metabolic scope). This result strongly supports the view that a high Rtf ratio contributes to a decrease in available metabolic energy by diverting energy from, e.g., growth or swimming performance. A comparison between the tagged fish and the theoretical model reinforced the hypothesis that, when Rtf attained 4%, the increase in metabolic rate reflected a supplementary and costly swimming effort necessary to maintain vertical position. In this condition, the swimbladder cannot regulate the buoyancy of tagged fish.  相似文献   

16.
This paper describes a closed-chamber method for measuring CO2 fluxes in intertidal soft sediments during periods of emersion. The method relies on closed-circuit incubations of undisturbed sediment and measurement of CO2 exchanges using an infrared gas analyser. The method was assessed during field experiments, both in light and dark conditions, on an exposed sandy beach and in an estuary. The rates of gross community production measured under moderate irradiance (4.2 mg C m-2 h-1 on the exposed sandy beach and 35 mg C m-2 h-1 in the estuary) are in good agreement with rates reported in the literature. In conjunction with appropriate sampling strategies, this method can be useful for estimating and comparing production of intertidal areas or for assessing factors that influence production.  相似文献   

17.
Life table response experiments were performed to evaluate the demographic consequences of: (1) the dietary regimes and (2) the length of laboratory rearing in strains of Dinophilus gyrociliatus, a small infaunal polychaete. The first experiment was performed using animals recently collected from the natural environment and fed either on spinach or on Tetramin (artificial fish food with high caloric content). Starting from this original group, two distinct laboratory strains were established: the first raised only with spinach, the second only with Tetramin. In the first experiment, the group fed on Tetramin exhibited greater population growth rate (5), shorter generation time (T) and reduced expectation of life (e0) with respect to the animals fed on spinach. The second experiment took place 2 years later to evaluate the difference in life history traits between these two laboratory strains. In the case of the group fed on Tetramin, population parameters exhibited marked variations; in fact, 5 and the net reproductive rate (R0) were significantly higher and T and e0 were shorter than the corresponding parameters observed in the first experiment. Conversely, the demographic variations induced by laboratory rearing on a spinach diet were limited to a reduction in the expectation of life. The decomposition analysis showed that the reduction in generation time and the increase in fecundity occurring during the first 4 weeks of life accounted for nearly all the differences in 5. During the long breeding period at constant temperature, photoperiod and salinity, a continuous selection of the most precocious and fecund individuals may have taken place as a consequence of the abundance of resources and the lack of predation.  相似文献   

18.
The fecundity of nine species of adult female calanoid copepods, and molting rates for copepodite stages of Calanus marshallae were measured in 24 h shipboard incubations from samples taken during the upwelling season off the Oregon coast. Hydrographic and chlorophyll measurements were made at approximately 300 stations, and living zooplankton were collected at 36 stations on the continental shelf (<150 m depth) and 37 stations offshore of the shelf (>150 m depth) for experimental work. In our experiments, maximum egg production rates (EPR) were observed only for Calanus pacificus and Pseudocalanus mimus, 65.7 and 3.9 eggs fem-1 day-1 respectively, about 95% of the maximum rates known from published laboratory observations. EPR of all other copepod species (e.g., C. marshallae, Acartia longiremis and Eucalanus californicus) ranged from 3% to 65% of maximum published rates. Fecundity was not significantly related to body weight or temperature, but was significantly correlated with chlorophyll a concentration for all species except Paracalanus parvus and A. longiremis. Copepod biomass and production in on-shelf waters was dominated by female P. mimus and C. marshallae, accounting for 93% of the adult biomass (3.1 mg C m-3) and 81% of the adult production (0.19 mg C m-3 day-1). Biomass in the off-shelf environment was dominated by female E. californicus, P. mimus, and C. pacificus, accounting for 95% of the adult biomass (2.2 mg C m-3) and 95% of the adult production (0.08 mg C m-3 day-1). Copepodite (C1-C5) production was estimated to be 2.1 mg C m-3 day-1 (on-shelf waters) and 1.2 mg C m-3 day-1 (off-shelf water). Total adult + juvenile production averaged 2.3 mg C m-3 day-1 (on-shelf waters) and 1.3 mg C m-3 day-1 (off-shelf waters). We compared our measured female weight-specific growth rates to those predicted from the empirical models of copepod growth rates of Huntley and Lopez [Am Nat (1992) 140:201-242] and Hirst and Lampitt [Mar Biol (1998) 132:247-257]. Most of our measured values were lower than those predicted from the equation of Huntley and Lopez. We found good agreement with Hirst and Lampitt for growth rates <0.10 day-1 but found that their empirical equations underestimated growth at rates >0.10 day-1. The mismatch with Hirst and Lampitt resulted because some of our species were growing at maximum rates whereas their composite empirical equations predict "global" averages that do not represent maximum growth rates.  相似文献   

19.
Maximum substrate and cosubstrate affinity, as judged by the Michaelis constant (K M ), of NADP+-dependent isocitrate dehydrogenase of pig heart (purchased from Boehringer, Mannheim, FRG) is attained at 37°C. If K M -values of substrate (Isocitrate, IC) and cosubstrate (NADP+) of NADP+-dependent isocitrate dehydrogenase (ICDH) of the white dorsal muscle of Idus idus L. is plotted against the experimental temperature (VT), W-shaped curves result. With increasing adaptation temperature (AT), there is a shift to increasing VT. It is suggested that the W-shaped curves are due either to the simultaneous presence of two multiple forms of the enzyme, or to the reversible temperature-dependent interconversion of one protein species.  相似文献   

20.
Life-history traits of Plesionika martia (Milne Edwards, 1883) were studied through data collected during six seasonal trawl surveys carried out in the Ionian Sea (eastern-central Mediterranean) between July 1997 and September 1998. P. martia was found at between 304 and 676 m depth, with the highest density in the 400-600 m range. Intraspecific, size-related depth segregation was shown. Recruitment occurred in summer at the shallowest depths. Juveniles moved to the deepest grounds as they grew. The largest female and male were 26 and 25 mm carapace length, respectively. The sex ratio was slightly in favour of females at depths >400 m. Although a seasonal spawning peak was shown, the reproduction appears to be rather prolonged throughout the year. Females with ripe gonads were found from spring to autumn. Ovigerous females with eggs in late maturity stage were found year round. Large females could spawn more than one time within their annual reproductive cycle. The size at first maturity (50% of the ovigerous females) was 15.5 mm CL. Average brood size of eggs with a well-developed embryo was 2,966ǃ,521. Iteroparity, low fecundity and large egg size patterns were observed. Brood size increased according to the carapace length. Two main annual groups were found in the field population of the Ionian Sea. Estimates of the Von Bertalanffy growth parameters are: LX=30.5 mm, k=0.44 year-1 in females; LX=28.0 mm, k=0.50 year-1 in males. A negative allometry was detected mostly in the ovigerous females. The life cycle of P. martia is discussed in the light of life-history adaptations shown in other deep-water shrimp species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号