首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
Abstract: In optimization problems with at least two conflicting objectives, a set of solutions rather than a unique one exists because of the trade‐offs between these objectives. A Pareto optimal solution set is achieved when a solution cannot be improved upon without degrading at least one of its objective criteria. This study investigated the application of multi‐objective evolutionary algorithm (MOEA) and Pareto ordering optimization in the automatic calibration of the Soil and Water Assessment Tool (SWAT), a process‐based, semi‐distributed, and continuous hydrologic model. The nondominated sorting genetic algorithm II (NSGA‐II), a fast and recent MOEA, and SWAT were called in FORTRAN from a parallel genetic algorithm library (PGAPACK) to determine the Pareto optimal set. A total of 139 parameter values were simultaneously and explicitly optimized in the calibration. The calibrated SWAT model simulated well the daily streamflow of the Calapooia watershed for a 3‐year period. The daily Nash‐Sutcliffe coefficients were 0.86 at calibration and 0.81 at validation. Automatic multi‐objective calibration of a complex watershed model was successfully implemented using Pareto ordering and MOEA. Future studies include simultaneous automatic calibration of water quality and quantity parameters and the application of Pareto optimization in decision and policy‐making problems related to conflicting objectives of economics and environmental quality.  相似文献   

2.
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment.  相似文献   

3.
ABSTRACT: Precipitation and streamflow data from three nested subwatersheds within the Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma were used to evaluate the capabilities of the Soil and Water Assessment Tool (SWAT) to predict streamflow under varying climatic conditions. Eight years of precipitation and streamflow data were used to calibrate parameters in the model, and 15 years of data were used for model validation. SWAT was calibrated on the smallest and largest sub‐watersheds for a wetter than average period of record. The model was then validated on a third subwatershed for a range in climatic conditions that included dry, average, and wet periods. Calibration of the model involved a multistep approach. A preliminary calibration was conducted to estimate model parameters so that measured versus simulated yearly and monthly runoff were in agreement for the respective calibration periods. Model parameters were then fine tuned based on a visual inspection of daily hydrographs and flow frequency curves. Calibration on a daily basis resulted in higher baseflows and lower peak runoff rates than were obtained in the preliminary calibration. Test results show that once the model was calibrated for wet climatic conditions, it did a good job in predicting streamflow responses over wet, average, and dry climatic conditions selected for model validation. Monthly coefficients of efficiencies were 0.65, 0.86, and 0.45 for the dry, average, and wet validation periods, respectively. Results of this investigation indicate that once calibrated, SWAT is capable of providing adequate simulations for hydrologic investigations related to the impact of climate variations on water resources of the LWREW.  相似文献   

4.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

5.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   

6.
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals.  相似文献   

7.
Watershed simulation models such as the Soil & Water Assessment Tool (SWAT) can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of model outputs, that the calibrated models may not reflect actual watershed behavior. Thus, it is often advantageous to use “soft data” (i.e., qualitative knowledge such as expected denitrification rates that observed time series do not typically exist) to ensure that the calibrated model is representative of the real world. The primary objective of this study is to evaluate the efficacy of coupling SWAT‐Check (a post‐evaluation framework for SWAT outputs) and IPEAT‐SD (Integrated Parameter Estimation and Uncertainty Analysis Tool‐Soft & hard Data evaluation) to constrain the bounds of soft data during SWAT auto‐calibration. IPEAT‐SD integrates 59 soft data variables to ensure SWAT does not violate physical processes known to occur in watersheds. IPEAT‐SD was evaluated for two case studies where soft data such as denitrification rate, nitrate attributed from subsurface flow to total discharge ratio, and total sediment loading were used to conduct model calibration. Results indicated that SWAT model outputs may not satisfy reasonable soft data responses without providing pre‐defined bounds. IPEAT‐SD provides an efficient and rigorous framework for users to conduct future studies while considering both soft data and traditional hard information measures in watershed modeling.  相似文献   

8.
This paper examines the performance of a semi‐distributed hydrology model (i.e., Soil and Water Assessment Tool [SWAT]) using Sequential Uncertainty FItting (SUFI‐2), generalized likelihood uncertainty estimation (GLUE), parameter solution (ParaSol), and particle swarm optimization (PSO). We applied SWAT to the Waccamaw watershed, a shallow aquifer dominated Coastal Plain watershed in the Southeastern United States (U.S.). The model was calibrated (2003‐2005) and validated (2006‐2007) at two U.S. Geological Survey gaging stations, using significant parameters related to surface hydrology, hydrogeology, hydraulics, and physical properties. SWAT performed best during intervals with wet and normal antecedent conditions with varying sensitivity to effluent channel shape and characteristics. In addition, the calibration of all algorithms depended mostly on Manning's n‐value for the tributary channels as the surface friction resistance factor to generate runoff. SUFI‐2 and PSO simulated the same relative probability distribution tails to those observed at an upstream outlet, while all methods (except ParaSol) exhibited longer tails at a downstream outlet. The ParaSol model exhibited large skewness suggesting a global search algorithm was less capable of characterizing parameter uncertainty. Our findings provide insights regarding parameter sensitivity and uncertainty as well as modeling diagnostic analysis that can improve hydrologic theory and prediction in complex watersheds. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

9.
Due to resource constraints, long‐term monitoring data for calibration and validation of hydrologic and water quality models are rare. As a result, most models are calibrated and, if possible, validated using limited measured data. However, little research has been done to determine the impact of length of available calibration data on model parameterization and performance. The main objective of this study was to evaluate the impact of length of calibration data (LCD) on parameterization and performance of the Agricultural Policy Environmental eXtender model for predicting daily, monthly, and annual streamflow. Long‐term (1984‐2015) measured daily streamflow data from Rock Creek watershed, an agricultural watershed in northern Ohio, were used for this study. Data were divided into five Short (5‐year), two Medium (15‐year), and one Long (25‐year) streamflow calibration data scenarios. All LCD scenarios were calibrated and validated at three time steps: daily, monthly, and annual. Results showed LCD affected the ability of the model to accurately capture temporal variability in simulated streamflow. However, overall average streamflow, water budgets, and crop yields were simulated reasonably well for all LCD scenarios.  相似文献   

10.
Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of Soil and Water Assessment Tool (SWAT) modeling to channel dimensions to demonstrate how a conceptual representation of a watershed system affects streamflow and sediment modeling. Results showed the amount of uncertainty and equifinality strongly responded to channel dimensions. On the other hand, the model performance did not significantly vary with the changes in the channel representation due to the degree of freedom allowed by the conceptual nature of hydrologic modeling in the parameter calibration. Such findings demonstrated good modeling performance statistics do not necessarily mean small output uncertainty, and partial improvements in the watershed representation may neither increase modeling accuracy nor reduce uncertainty. We also showed the equifinality and uncertainty of hydrologic modeling are case‐dependent rather than specific to models or regions, suggesting great caution should be used when attempting to transfer uncertainty analysis results to other modeling studies, especially for ungauged watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

11.
Abstract: The Soil and Water Assessment Tool (SWAT) model combined with different snowmelt algorithms was evaluated for runoff simulation of an 114,345 km2 mountainous river basin (the headwaters of the Yellow River), where snowmelt is a significant process. The three snowmelt algorithms incorporated into SWAT were as follows: (1) the temperature‐index, (2) the temperature‐index plus elevation band, and (3) the energy budget based SNOW17. The SNOW17 is more complex than the temperature‐based snowmelt algorithms, and requires more detailed meteorological and topographical inputs. In order to apply the SNOW17 in the SWAT framework, SWAT was modified to operate at the pixel scale rather than the normal Hydrologic Response Unit scale. The three snowmelt algorithms were evaluated under two parameter scenarios, the default and the calibrated parameters scenarios. Under the default parameters scenario, the parameter values were determined based on a review of the current literature. The purpose of this type of evaluation was to assess the applicability of SWAT in ungauged basins, where there is little observed data available for calibration. Under the calibrated parameters scenario, the parameters were calibrated using an automatic calibration program, the Shuffled Complex Evolution (SCE‐UA). The purpose of this type of evaluation was to assess the applicability of SWAT in gauged basins. Two time periods (1975‐1985 and 1986‐1990) of monthly runoff data were used in this study to evaluate the performance of SWAT with different snowmelt algorithms. Under the default parameters scenario, the SWAT model with complex energy budget based SNOW17 performed the best for both time periods. Under the calibrated parameters scenario, the parameters were calibrated using monthly runoff from 1975‐1985 and validated using monthly runoff from 1986‐1990. After parameter calibration, the performance of SWAT with the three snowmelt algorithms was improved from the default parameters scenario. Further, the SWAT model with temperature‐index plus elevation band performed as well as the SWAT model with SNOW17. The SWAT model with temperature‐index algorithm performed the poorest for both time periods under both scenarios. Therefore, it is suggested that the SNOW17 model be used for modeling ungauged basins; however, for gauged basins, the SNOW17 and simple temperature‐index plus elevation band models could provide almost equally good runoff simulation results.  相似文献   

12.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

13.
Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.  相似文献   

14.
ABSTRACT: The performance of two popular watershed scale simulation models — HSPF and SWAT — were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine‐year period (1987 through 1995) and verified using an independent 15‐year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models' hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF's overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application.  相似文献   

15.
Cho, Jaepil, Richard R. Lowrance, David D. Bosch, Timothy C. Strickland, Younggu Her, and George Vellidis, 2010. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):586-602. DOI: 10.1111/j.1752-1688.2010.00436.x Abstract: The Soil and Water Assessment Tool (SWAT) does not fully simulate riparian buffers, but has a simple filter function that is responsive to filter strip width (FILTERW). The objectives of this study were to (1) evaluate SWAT hydrology and water quality response to changes in watershed subdivision levels and different FILTERW configurations and (2) provide guidance for selecting appropriate watershed subdivision for model runs that include the riparian buffer feature through the FILTERW parameter. Watershed subdivision level is controlled by the critical source area (CSA) which defines the minimum drainage area required to form the origin of a stream. SWAT was calibrated on a 15.7 km2 subdrainage within the Little River Experimental Watershed, Georgia. The calibrated parameter set was applied to 32 watershed configurations consisting of four FILTERW representations for each of eight CSA levels. Streamflow predictions were stable regardless of watershed subdivision and FILTERW configuration. Predicted sediment and nutrient loads from upland areas decreased as CSA increased when spatial variations of riparian buffers are considered. Sediment and nutrient yield at the watershed outlet was responsive to different combinations of CSA and FILTERW depending on selected in-stream processes. CSA ranges which provide stable sediment and nutrient yields at the watershed outlet was suggested for avoiding significant modifications in selected parameter set.  相似文献   

16.
Historically, many watershed studies have been based on using the streamflow flux, typically from a single gauge at the basin's outlet, to support calibration. In this setting, there is great potential for equifinality of parameters during the optimization process, especially for parameters that are not directly related to streamflow. Therefore, some of the optimal parameter values achieved during the autocalibration process may be physically unrealistic. In recent decades a vast array of data from land surface models and remote sensing platforms can help to constrain hydrologic fluxes such as evapotranspiration (ET). While the spatial resolution of these ancillary datasets varies, the continuous spatial coverage of these gridded datasets provides flux measurements across the entire basin, in stark contrast to point‐based streamflow data. This study uses Global Land Evaporation: the Amsterdam Model data to constrain Soil and Water Assessment Tool parameter values associated with ET to a more physically realistic range. The study area is the Little Washita River Experimental Watershed, in southern Oklahoma. Traditional objective metrics such as the Nash‐Sutcliffe coefficients record no performance improvement after application of this method. However, there is a dramatic increase in the number of days with receding flow where simulations match observed streamflow.  相似文献   

17.
Abstract: This study incorporates the newly available Gravity Recovery and Climate Experiment (GRACE) water storage data and water table data from well logs to reduce parameter uncertainty in Soil and Water Assessment Tool (SWAT) calibration using a SUFI2 (sequential uncertainty fitting) framework for the Lower Missouri River Basin. Model evaluations are performed in multiple stages using a multiobjective function consisting of multisite streamflow and GRACE water storage data as well as a groundwater component. Results show that (1) a model calibrated with both streamflow and GRACE data simultaneously can maintain the water balance for the whole basin, but may improperly partition surface flow and base flow. Additional inclusion of the groundwater constraint can significantly improve the model performance in groundwater hydrological processes. In our case, the estimation of specific yield of shallow aquifers has been increased to 10?2 from previous much underestimated level (<10?3). (2) The daily streamflow data are needed to confine the parameters related to water flow in channels such as the Manning’s coefficient, which are less sensitive to the monthly simulations. (3) Parameters are nonuniformly sensitive for different goal variables, and thus, proper specification of a prior distribution of parameters may be the key factor for global optimization algorithms to obtain stable and realistic model performance.  相似文献   

18.
Abstract: The accuracy of streamflow forecasts depends on the uncertainty associated with future weather and the accuracy of the hydrologic model that is used to produce the forecasts. We present a method for streamflow forecasting where hydrologic model parameters are selected based on the climate state. Parameter sets for a hydrologic model are conditioned on an atmospheric pressure index defined using mean November through February (NDJF) 700‐hectoPascal geopotential heights over northwestern North America [Pressure Index from Geopotential heights (PIG)]. The hydrologic model is applied in the Sprague River basin (SRB), a snowmelt‐dominated basin located in the Upper Klamath basin in Oregon. In the SRB, the majority of streamflow occurs during March through May (MAM). Water years (WYs) 1980‐2004 were divided into three groups based on their respective PIG values (high, medium, and low PIG). Low (high) PIG years tend to have higher (lower) than average MAM streamflow. Four parameter sets were calibrated for the SRB, each using a different set of WYs. The initial set used WYs 1995‐2004 and the remaining three used WYs defined as high‐, medium‐, and low‐PIG years. Two sets of March, April, and May streamflow volume forecasts were made using Ensemble Streamflow Prediction (ESP). The first set of ESP simulations used the initial parameter set. Because the PIG is defined using NDJF pressure heights, forecasts starting in March can be made using the PIG parameter set that corresponds with the year being forecasted. The second set of ESP simulations used the parameter set associated with the given PIG year. Comparison of the ESP sets indicates that more accuracy and less variability in volume forecasts may be possible when the ESP is conditioned using the PIG. This is especially true during the high‐PIG years (low‐flow years).  相似文献   

19.
Surendran Nair, Sujithkumar, Kevin W. King, Jonathan D. Witter, Brent L. Sohngen, and Norman R. Fausey, 2011. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools. Journal of the American Water Resources Association (JAWRA) 47(6):1285–1297. DOI: 10.1111/j.1752‐1688.2011.00570.x Abstract: Watershed‐scale water‐quality simulation tools provide a convenient and economical means to evaluate the environmental impacts of conservation practices. However, confidence in the simulation tool’s ability to accurately represent and capture the inherent variability of a watershed is dependent upon high quality input data and subsequent calibration. A four‐stage iterative and rigorous calibration procedure is outlined and demonstrated for Soil Water Analysis Tool (SWAT) using data from Upper Big Walnut Creek (UBWC) watershed in central Ohio, USA. The four stages and the sequence of their application were: (1) parameter selection, (2) hydrology calibration, (3) crop yield calibration, and (4) nutrient loading calibration. Following the calibration, validation was completed on a 10 year period. Nash‐Sutcliffe efficiencies for streamflow over the validation period were 0.5 for daily, 0.86 for monthly, and 0.87 for annual. Prediction efficiencies for crop yields during the validation period were 0.69 for corn, 0.54 for soybeans, and 0.61 for wheat. Nitrogen loading prediction efficiency was 0.66. Compared to traditional calibration approaches (no crop yield calibration), the four‐stage approach (with crop yield calibration) produced improved prediction efficiencies, especially for nutrient balances.  相似文献   

20.
Abstract: Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validation is performed at the river basin outlet without accounting for spatial variations in hydrological parameters within the subunits. In this study, we calibrated the model to capture the spatial variations in runoff at subwatershed level to assure local water balance, and validated the streamflow at key gaging stations along the river to assure temporal variability. Ohio and Arkansas‐White‐Red River Basins of the United States were modeled using Soil and Water Assessment Tool (SWAT) for the period from 1961 to 1990. R2 values of average annual runoff at subwatersheds were 0.78 and 0.99 for the Ohio and Arkansas Basins. Observed and simulated annual and monthly streamflow from 1961 to 1990 is used for temporal validation at the gages. R2 values estimated were greater than 0.6. In summary, spatially distributed calibration at subwatersheds and temporal validation at the stream gages accounted for the spatial and temporal hydrological patterns reasonably well in the two river basins. This study highlights the importance of spatially distributed calibration and validation in large river basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号