首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
北京市典型道路交通噪声排放特征   总被引:1,自引:1,他引:0  
采用北京市道路交通噪声自动监测系统2013—2017年采集的等效连续A声级数据,对城市快速路、城市主干线、城市次干线、城市支路的代表性站点噪声排放情况进行了统计分析,结果显示,北京市不同等级的道路噪声排放具备一定的特征,排放水平从大到小依次为城市快速路城市主干线城市支路和城市次干线,道路噪声随时间变化存在较为一致的周期性排放特征,24 h变化特征比较明显。个别道路排放特征存在特异性,如城市主干线道路的一个代表监测站点噪声监测值出现了逐年下降趋势,分析发现,北京市非首都功能疏解对其噪声值的下降有一定贡献。采取一定的规划和管理措施有助于减少道路交通噪声的排放。  相似文献   

2.
海口市声环境影响因素分析及预测   总被引:7,自引:0,他引:7       下载免费PDF全文
噪声污染一直是海口市主要的环境问题之一。主要原因是城市纵深度太低,道路密度太高,交通布局不合理,1991年-2000年城市区域环境噪声和道路交通噪声的平均值分别为59.0dB(A)和69.5dB(A)。利用城市区域环境噪声预测方法和道路交通噪声预测方法对该市噪声进行预测,2001年-2005年该市的区域噪声昼间平均等效声级综合预测值在57.6dB(A)-56.7dB(A)之间;道路交通噪声昼间平均等效声级综合预测值在68.2dB(A)-68.3dB(A)之间。  相似文献   

3.
为研究长三角典型城市公交车细颗粒物排放特征,采用便携式排放测试系统(PEMS),对上海、杭州和苏州三大城市的8辆典型城市公交车开展实际道路细颗粒物排放实验。研究结果表明:长三角典型城市车辆的实际道路平均车速为22.7 km/h,怠速比例为20.4%,加减速比例为54.5%;在稳态行驶工况下,随车速增大,公交车颗粒物质量及数量排放呈逐渐增大趋势;在20 km/h车速范围内,上海国III、国IV和苏州国III公交车颗粒数浓度呈双峰粒径分布,其他公交车均为单峰分布;随比功率的增大,公交车颗粒质量呈逐渐增大的趋势,国IV公交车颗粒数量呈先下降再增大趋势,国III公交车颗粒数量呈上升趋势;公交车颗粒质量综合排放因子为0.8~189 mg/km,颗粒数量综合排放因子为6.2×1012~9.6×1014#/km。  相似文献   

4.
浅析新疆城市声环境现状与对策   总被引:1,自引:0,他引:1  
研究了新疆近五年来的城市声环境变化趋势,并对城市噪声污染现状进行综合分析评价,提出相关的治理对策与建议.从区域环境噪声状况看,噪声值呈下降趋势;从声源强度看,对城市声环境冲击最大的是交通噪声源;从道路交通噪声状况看,近五年交通噪声污染呈逐年下降趋势,但全区各年度均有超标路段,全区城市道路交通噪声仍存在污染.因此,整治城市噪声污染应贯彻"预防为主、防治结合"的方针,综合利用科技、法律手段来改善城市声环境.  相似文献   

5.
公交车已成为当前北京市道路交通噪声的主要束源之一,针对公交车声源模型缺乏而沿用大型车声源模型所致的噪声预测误差问题,在北京市选取了两类常见公交车进行了537辆车的单车通过噪声测试,在无效数据剔除和背景噪声修正后,利用回归分析法获得了北京市公交车声源模型,通过与现有《公路建设项目环境影响评价规范》中大型车声源模型的比较,显示出建立北京市公交车噪声声源模型的必要性。基于《公路建设项目环境影响评价规范》中的道路交通噪声预测方法,提出了符合北京市实际情况的道路交通噪声预测模型。  相似文献   

6.
国内外噪声自动监测系统研究新进展   总被引:1,自引:0,他引:1  
先把环境噪声的人工监测方法和自动监测方法进行了对比,结果表明自动监测是环境噪声监测的必然趋势。在分析了目前国内外噪声自动监测研究的相关论文后,从城市环境噪声数据的性质、噪声自动监测系统的物理构成、噪声监测子站的布设、噪声自动监测有效时间的确定以及如何能从已得到的噪声数据中获得更多的信息这几个方面综述了目前国内外噪声自动监测相关研究的最新成果。并对其进一步的研究发展方向进行了展望。  相似文献   

7.
公交车站对交通噪声的影响分析   总被引:1,自引:0,他引:1  
首先根据公交车的运行特性提出了公交车在各行驶阶段的噪声计算方法并采用能量叠加的方法建立了公交车站附近交通噪声预测模型.然后对广州市新港西路交通噪声的实测结果与模型计算结果进行了比较,验证了该预测模型的正确性.最后分析了公交车站附近交通噪声的影响因素,通过对公交车站附近的交通噪声和远离公交车站的交通噪声的比较,得到公交车站附近交通噪声明显增大的结论.  相似文献   

8.
为了研究长三角典型城市公交车在实际道路的氮氧化物(NO_x)排放特性,采用便携式车载排放测试系统(PEMS),对上海、杭州和苏州3大城市的国Ⅲ、国Ⅳ柴油公交车及LNG公交车共8辆进行实际道路NO_x排放试验。结果表明:在稳态行驶工况下,柴油公交车NO_x稳态每秒排放呈上升趋势,LNG公交车呈波动变化;国Ⅲ柴油公交车NO_x稳态燃料排放呈波动变化,国Ⅳ柴油及LNG公交车呈下降趋势;随比功率增加,柴油公交车NO_x瞬态排放大体呈逐渐增加的趋势,而LNG公交车呈先减少后增大的趋势,公交车NO_x综合单位里程排放因子在5.0 g/km~19.1 g/km之间,排放因子约为5.1 g/(kW·h)~15.8 g/(kW·h)。  相似文献   

9.
研究了城市地铁产生的二次辐射噪声测量现状及评价方法,依据现行地铁二次辐射噪声监测相关标准,对城市地铁产生的二次辐射噪声进行测量,将JGJ/T 170—2009、GB 50118—2010和GB/T 50355—2018中规定的限值与地铁二次辐射噪声的特征频谱、环境影响评价以及噪声限值进行了对比分析。结果显示,现行标准限值在执行中存在一定的不完善之处,需要根据实测数据重新分析评价标准的适用性、准确性和合理性。结合当前噪声管理的社会需求,提出了声级增量和特征频谱增量的概念,并将分析结果与现行标准值进行了比较分析,表明声级增量和特征频谱增量能更好地反映二次辐射噪声的影响,对于地铁二次辐射噪声标准的制修订具有参考价值。  相似文献   

10.
为了解快速路交通噪声的分布特征及污染现状,对城市快速路的交通噪声进行监测,结果表明,噪声随车流量的增大而升高,同时受车辆类型等其他因素的影响;随着与快速路水平距离的增大,交通噪声值呈下降趋势,特别是在距离快速路路沿前40 m内噪声衰减尤为明显;距高架道路不同水平距离处的噪声声场垂直分布规律基本一致,但距离高架道路较远处的敏感建筑物噪声值最高点楼层有所上移;快速路旁噪声敏感点交通噪声超标情况严重。  相似文献   

11.
城市公交车厢内噪声监测与分析   总被引:1,自引:0,他引:1  
主要对城市公交车厢内的噪声进行监测分析,用等效连续A声级和室内噪声评价指标对监测数据进行分析,评估车厢内的声音品质。结果表明,单纯用A声级不能准确反映公交车厢内的噪声污染状况,用室内噪声标准NCB曲线分析的结果与乘客的主观感受相关性良好,建议用A声级和NCB标准曲线综合考虑制定公交车厢内的噪声标准。  相似文献   

12.
以城市总体规划为指导,对南京市声环境功能区划进行调整。根据相关技术规范,按照宜粗不宜细的原则,对城市和乡村功能区分别进行划分;明确了4类声功能区的距离范围,更加符合噪声传播特性;针对噪声污染特点,对于相关规范未涵盖的内容作了补充规定,使声环境管理更具针对性。区划结果表明,主城区1类区和3类区比例有所减小,2类区比例有所增加,全市范围内1类区比例仍为最高。  相似文献   

13.
姚海英  邵红 《干旱环境监测》1991,5(4):245-248,254
对学校环境噪声作了初步调查表明:学校环境噪声主要污染源来自交通噪声,危害最大的是位于交通干线两侧的学校.上课时间能持续在64.5~66.9dB(A)之间的较高水平.其噪声污染与距噪声源距离呈负相关(r=-0.679).  相似文献   

14.
重庆市道路交通噪声分布规律及控制措施研究   总被引:3,自引:2,他引:1  
监测重庆市主城区道路旁居民住宅不同楼层昼间交通噪声等效声级,并分析其垂直分布规律。结果表明,随测点与地面高差的增加,噪声呈先增加后减小的趋势。隔声效果监测结果表明,隔声屏在重庆典型山城的地理环境下隔声效果较差,隔声窗具有较好的隔声效果,且测点距离越近隔声效果越明显。  相似文献   

15.
关于道路交通噪声评价方法的探讨   总被引:2,自引:1,他引:1  
根据我国城市道路交通噪声评价现状,分析现行评价道路交通噪声方法的弊端,提出改进道路交通噪声评价的思路.  相似文献   

16.
噪声地图在环境噪声监测中的应用   总被引:1,自引:0,他引:1  
以青岛理工大学新校区为例,采用变网格划分法,研究了基于地理信息系统(GIS)的噪声地图在区域环境噪声评价方面的应用。结果表明,噪声预测系统结合GIS,以数字与渲染图的方式能够直观地展现噪声污染在环境区域的分布状况,可用于指导区域的规划和环境噪声评价。  相似文献   

17.
针对城市噪声污染多头管理、监测方法单一、治理效率低等问题,基于Android 4G技术城市环境噪声分布式监测设计思想,介绍智慧城市噪声分布式监测的应用方法。以移动终端作为传感器节点替代传统集中式噪声监测的分布式监测方法,依托云计算数据处理平台,解决了监测网络数据管理分散、定点检测站和一些手持检测设备收集数据引起的信息滞后的问题,有益于实现城市环境噪声污染数据分析、处理和融合等复杂功能,使各种质控任务和标准传递等复杂任务得到自动化执行与反馈,将对城市噪声污染联防联控起到积极推动作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号