首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%.当污染加重,水溶性离子...  相似文献   

2.
成都夏冬季PM2.5中水溶性无机离子污染特征   总被引:1,自引:5,他引:1  
利用大气细颗粒物水溶性组分及气态前体物在线监测设备(GAC-IC)对成都市2017年夏、冬两季大气PM2.5中水溶性无机离子(WSIIs)及气态前体物进行了连续观测,对其污染特征及冬季一次典型污染过程进行了深入分析.结果表明,成都冬季PM2.5质量浓度为100.2μg·m-3,显著高于夏季(34.0μg·m-3).WSIIs是PM2.5的重要组成,对夏、冬季PM2.5的贡献分别可达52.9%和53.3%.夏、冬季的二次离子(SNA)占WSIIs的比例分别为73.2%和87.6%,其中,SO42-和NO-3分别是夏、冬季SNA的主导组分,对SNA的贡献分别为37.7%和59.7%.冬季NO-3/SO42-比值(2.7)显著高于夏季(0.8),体现了移动源(尤其是机动车源)对该季节PM<...  相似文献   

3.
成都市城区PM2.5中二次水溶性无机离子污染特征   总被引:1,自引:1,他引:1  
李友平  周洪  张智胜  王启元  罗磊 《环境科学》2014,35(12):4439-4445
2009年4月~2010年1月在成都市城区采集131个PM2.5样品,应用离子色谱法对PM2.5中二次水溶性无机离子(NH+4、NO-3和SO2-4)含量进行分析,并探讨其污染特征.结果表明,PM2.5中NH+4、NO-3和SO2-4的平均浓度值分别为(10.4±8.6)、(19.7±14.6)和(32.8±21.8)μg·m-3,分别占PM2.5质量的(5.5±2.8)%、(11.1±3.5)%和(19.3±6.4)%,三者总和占PM2.5质量浓度的(35.9±12.7)%.PM2.5中NH+4、NO-3和SO2-4的季节变化特征明显,夏、冬两季NH+4、NO-3和SO2-4的浓度均为SO2-4>NO-3>NH+4,其总和占PM2.5质量浓度的百分比为冬(44.3%)>夏(39.4%).相关分析结果显示,NH+4、NO-3和SO2-4在成都主要以NH4HSO4、(NH4)2SO4和NH4NO3形式存在;NO-3/SO2-4比值表明,成都市大气中硫和氮的主要来源以固定源为主;硫氧化速率和氮氧化速率的年均值分别为:0.33±0.12和0.19±0.09,表明成都市PM2.5中SO2-4和NO-3主要经二次转化形成.  相似文献   

4.
为探讨厦门市冬季大气PM_(2.5)含碳组成特征,于2014-12-10至2015-01-09同步采集了城区和郊区的PM_(2.5)样品。采用热光透射法分析了PM_(2.5)中OC、EC的质量浓度。结果表明,近年来厦门市PM_(2.5)、OC、EC的浓度表现出逐年降低的趋势。城区和郊区的OC平均浓度分别为9.77±1.87和9.17±2.42μg/m~3,EC平均浓度分别为1.87±0.73和2.43±1.10μg/m~3,与国内外其他城市相比,厦门市冬季大气PM_(2.5)中的OC、EC浓度均处于较低水平,人为引起的大气含碳成分污染相对较轻。城区和郊区的OC/EC值均大于2,SOC占OC比例分别高达34.96%、39.03%,厦门大气PM_(2.5)中的OC受到二次污染较严重。PM_(2.5)、OC、EC的分布规律表明,OC、EC受到了除天气条件以外的其他因素如OC和EC污染源种类、源强以及二次转化程度的影响。城区(R2=0.107 9)和郊区(R2=0.341 9)的OC与EC相关性不明显,初步判断厦门市冬季PM_(2.5)中OC和EC的来源较复杂,EC可能主要来自化石燃料和生物质不完全燃烧等一次排放源,OC则主要受到化石燃料燃烧和二次污染的影响,城区污染源还包括烹饪源以及生物质燃烧。  相似文献   

5.
2009年1月-2011年12月在武汉光谷商业区选取G、H两点,采集颗粒物样品,分析了PM10和PM2.5浓度,采用离子色谱测定了灰霾期间PM2.5中4种水溶性阴离子。结果表明:G点PM10和PM2.5年平均浓度分别超过《环境空气质量标准》(GB 3095-2012)二级浓度限值的1.48~1.73倍和1.94~2.4倍,H点分别超标1.16~1.4倍和1.26~1.86倍。灰霾期间PM2.5中主要水溶性阴离子为NO3-、SO42-、NO2-和Cl-,G点4种水溶性阴离子占PM2.5中总水溶性离子的比例分别是为20.29%、10.16%、9.51%和4.62%,H点为14.41%、30.12%、6.64%和3.83%。G点NOx-浓度约为SO42-浓度的3倍,而H点SO42-浓度约为NOx-浓度的1.5倍。G与H点NOx-和SO42-离子浓度的差异暗示两监测点的主要污染源不同,交通量和植被覆盖率可能是导致两点浓度差异的原因。。  相似文献   

6.
关璐  丁铖  张毓秀  胡建林  于兴娜 《环境科学》2022,43(6):2888-2894
以南京江北新区2019年4、7、11和12月为代表分析了大气PM2.5中水溶性有机氮(WSON)的季节变化特征,探讨了WSON与水溶性无机氮(WSIN)的关系.结果表明,南京江北新区PM2.5中WSON的变化范围为0.446~4.200μg·m-3,平均值为2.04μg·m-3,略高于北京、上海和常州的观测结果.秋季PM2.5中的WSON平均值最高[(2.967±0.643)μg·m-3],约为其他3个季节的1.7倍.南京细粒子中WSON对水溶性总氮(WSTN)的平均贡献率占到25%,并表现出夏秋高、冬春低的特点,如冬季该占比仅为夏秋季的50%左右. WSON与WSIN中的NO-2-N相关性最高,与NO-3-N的相关性最低,可能与夏季高温导致NO-3-N的挥发有关.通过主成分分析(PCA)表明,南京江北新区细粒子中WSON主要...  相似文献   

7.
杭州市冬季环境空气PM2.5中碳组分污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%.   相似文献   

8.
为研究聊城市冬季PM2.5污染特征,于2016年1月7-29日在聊城市区对PM2.5样品进行了采集,并对其水溶性离子(包括F-、Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示:观测期间聊城市ρ(PM2.5)平均值为(192.4±88.9)μg/m3,超过GB 3095-2012《环境空气质量标准》日均二级标准限值的1.6倍.水溶性离子质量浓度为(77.4±46.9)μg/m3,占ρ(PM2.5)的40.2%,其中SNA(NO3-、SO42-和NH4+)为主要离子,占水溶性离子比例达82.5%.轻度、中度、重度及严重污染时PM2.5中水溶性离子质量浓度分别为(32.49±3.67)(46.26±17.66)(77.11±11.64)和(139.21±51.71)μg/m3,SNA分别占ρ(PM2.5)的24.4%、26.7%、30.4%和39.0%,随着污染程度加重,SNA比例升高.观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.18和0.20,随着ρ(PM2.5)升高,SOR及NOR明显上升,表明冬季PM2.5污染越严重时SO2与NO2的转化速率越强,二次无机污染严重.主成分分析结果表明,二次转化、扬尘源及工业生产为水溶性离子的主要来源.后向气流轨迹结果显示,观测期间污染气团主要来源于西北方向,受内蒙古及河北城市影响较大,但当污染气团来源于周边城市且天气静稳时,颗粒物浓度最高.研究显示,聊城市冬季PM2.5污染较为严重.   相似文献   

9.
基于高分辨率MARGA分析成都市PM2.5中水溶性离子污染特征   总被引:4,自引:0,他引:4  
尹寒梅  陈军辉  冯小琼  姜涛  钱骏  刘政 《环境科学》2020,41(9):3889-3898
利用高分辨率MARGA对2019年成都市PM2.5中水溶性离子展开连续监测,结合气象参数分析水溶性离子污染特征.结果表明,MARGA监测的8种水溶性离子质量浓度与PM2.5变化趋势一致,水溶性离子年均浓度为(23.1±13.6)μg·m-3,在PM2.5中占比为48.6%,表明水溶性离子为PM2.5重要组分.各离子质量浓度大小顺序依次为:NO-3、 SO42-、 NH+4、 Cl-、 Ca2+、 K+、 Mg2+和Na+,其中二次离子(NO-3、 SO42-和NH+4)年均质量浓度为(20.2±2.7)μg·m...  相似文献   

10.
本文于2008年7月至2009年8月在西安站点开展了大气细粒子(PM2.5, 空气动力学粒径小于等于2.5 μm的大气颗粒物)中含氮组分的观测,通过元素分析仪、TOC分析仪,离子色谱分析获得PM2.5中的总氮(TN)、水溶性总氮(WSN)、水溶性无机氮(WSIN),水溶性有机氮(WSON)的年平均浓度分别为9.35 μg·m-3、 8.93 μg·m-3、5.31 μg·m-3、3.62 μg·m-3,其中WSN占同期大气PM2.5质量浓度的7.04%,WSON对总氮的贡献达43%,说明水溶性有机氮是西安大气细粒子中氮的主要组分。氮组分浓度水平明显分为秋、冬季高值和春、夏季低值的模式;WSON在各个季节、月份的百分比变化以及与部分离子相关性分析,揭示了西安有机氮和无机氮组分受不同的来源影响,其中生物质燃烧、腐殖质、农业活动等对水溶性有机氮贡献显著。  相似文献   

11.
无锡市冬季典型天气PM2.5中碳组分的污染特征   总被引:1,自引:1,他引:1  
于2013-12-03~2014-01-03在无锡市对大气细粒子(PM2.5)进行了连续采集,并用热/光透射法(TOT)分析了其中有机碳(OC)和元素碳(EC)的浓度,结合气象参数,分析了冬季霾产生过程及霾天气下碳组分的污染特征.结果表明,采样期间共有3次霾产生过程,冷空气、风和降水成为改善空气质量最有效的途径.PM2.5、OC及EC的日均质量浓度分别为(132.38±87.17)、(22.80±9.77)和(2.08±1.63)μg·m-3,总碳(TC,TC=OC+EC)占PM2.5的23.57%,同时TC与PM2.5之间存在较好的相关性,相关系数为(R2)0.730;采样期间,TC在PM2.5中所占的比例与PM2.5的浓度之间存在相反的变化趋势,并且在霾天气下TC所占的比例要比非霾天气小,二次无机气溶胶粒子(SO2-4、NO-3、NH+4)的快速增长可能是造成霾天气下细粒子浓度较高的原因之一;OC/EC值为12.83,并且相关性较差,可能与二次污染有关,对二次有机气溶胶(SOC)进行估算:得到SOC平均质量浓度为9.04μg·m-3,占OC的40.96%.  相似文献   

12.
太原市PM2.5中有机碳和元素碳的污染特征   总被引:1,自引:3,他引:1  
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差.  相似文献   

13.
为探究当前空气质量持续改善背景下重污染地区大气PM2.5和水溶性无机离子(WSⅡs)的污染特征和季节变化,于2019年在太原市采集了四季PM2.5样品.结果表明,2019年太原市PM2.5年均质量浓度为(65.50±30.44)μg·m-3,水溶性离子浓度的季节特征为:冬季(39.81 μg·m-3) > 秋季(33.05 μg·m-3) > 春季(20.50 μg·m-3) > 夏季(19.62 μg·m-3).WSⅡs以二次离子SNA为主,占总离子浓度的76.90%±10.51%,且随着PM2.5污染加重,SNA的比重显著升高.其中,SO42-和NO3-在秋、冬季的浓度最高,这与气态污染物排放增加和二次转化程度的升高(硫氧化率SOR>0.30,氮氧化率NOR>0.10)有关;NH4+、Cl-和K+在冬季的浓度最高,是其他季节的1.2~7.9倍,可能归因于冬季燃煤和生物质燃烧活动的增加;由于春季风速较高,受土壤扬尘的影响,Ca2+和Mg2+的比重在春季显著增加为20.2%.春季和夏季为贫氨状态,而秋、冬季为富氨状态,且硝酸盐颗粒物在高湿度条件下的吸湿增长比硫酸盐更为显著.太原市大气PM2.5中水溶性离子主要来源于二次生成、燃煤、生物质燃烧和土壤扬尘.  相似文献   

14.
为探究西安市大气PM2.5中水溶性离子的污染特征及来源,本研究采集2017~2018年的PM2.5样品,利用离子色谱仪测定9种水溶性离子(SO2-4、NO-3、Cl-、F-、Na+、Mg2+、NH+4、K+和Ca2+)的浓度水平,并对NH+4的存在形式分析、氮氧化率(NOR)、硫氧化率(SOR)以及[NO-3]/[SO2-4]等进行探究.结果表明,西安市PM2.5中水溶性离子主要来自扬尘、燃煤、生物质燃烧和二次生成.Ca2+、SO2-4、NH+<...  相似文献   

15.
为研究山西省太原、阳泉、长治和晋城冬季PM2.5中碳质组分的污染特征和来源,于2017-11-15—12-31同步采集了冬季PM2.5样品,采用热/光分析法分析了样品中有机碳(OC)和元素碳(EC)组分含量,使用最小相关系数法估算了二次有机碳(SOC)浓度,并利用相关分析及正定矩阵因子分析法(PMF)研究了各城市PM2.5中碳质组分的来源。结果表明:采样期间各城市OC、EC的平均浓度分别为(13.5±5.7),(8.0±4.4)μg/m3,均呈阳泉((17.3±4.5),(13.6±3.0)μg/m3)>太原((16.5±7.0),(7.8±4.2)μg/m3)>长治((12.8±4.0),(7.7±2.8)μg/m3)>晋城((8.3±2.9),(2.9±1.3)μg/m3)的空间分布特点。各城市OC、EC与气态污染物SO2、NO2和CO均显著相关,表明燃煤源和机动车尾气对碳质组分的影响较大。OC和SOC与相对湿度均呈显著正相关,各城市SOC在OC的占比排序为太原(48%)>长治(45%)>晋城(36%)>阳泉(34%),与相对湿度一致,说明各城市冬季SOC的形成可能主要来自液相反应。PMF解析结果显示:各城市冬季PM2.5中碳质组分主要来源于燃煤源(24.2%~30.4%)、汽油车尾气(21.0%~30.9%)、柴油车尾气(16.1%~24.3%)和扬尘源(17.2%~20.5%),其中燃煤源对长治冬季PM2.5中碳质组分的贡献(30.4%)高于其他3个城市,汽油车尾气对太原的贡献(30.9%)高于其他城市,而柴油车尾气(24.3%)和扬尘(20.5%)对阳泉的贡献均高于其他城市。  相似文献   

16.
对2017年6月—2018年5月北京市延庆区大气PM2.5样本进行采集,分析了PM2.5中9种水溶性无机离子的污染特征,并利用SPSS软件进行来源解析。结果表明:延庆区大气PM2.5中总水溶性无机离子平均浓度为28.0 μg∕m 3,其中,S O 4 2 - 、N O 3 - 和N H 4 + 是最主要的水溶性无机离子,合计占比为82.1%。受天气影响,N O 3 - 和S O 4 2 - 浓度均表现为秋高冬低,N H 4 + 浓度为秋高夏低;受冬季气象条件和施工影响,Ca 2+、Mg 2+、Na +浓度冬季最高。根据电荷平衡分析,春季PM2.5中阴、阳离子基本达到平衡状态,夏、秋季呈弱酸性,冬季呈弱碱性;PM2.5中硫氧化率(SOR)、氮氧化率(NOR)的均值分别为0.53和0.27,大气中存在明显的二次转化过程;N O 3 - ∕S O 4 2 - 为1.66,说明机动车尾气排放源对PM2.5中水溶性无机离子贡献较大;根据N H 4 + 与S O 4 2 - 、N O 3 - 、Cl -的相关性分析,PM2.5中N O 3 - 和S O 4 2 - 以(NH4)2SO4、NH4HSO4、NH4NO3以及HNO3形式存在。利用SPSS软件进行皮尔森相关性分析,PM2.5中N O 3 - 、S O 4 2 - 、N H 4 + 两两相关性强,说明二次反应显著;Ca 2+、Mg 2+、Na + 两两相关性强,说明其污染来源可能相同;Cl -与K +相关性强,说明大气中Cl -主要以KCl的形式存在。利用因子分析模块进行主成分分析,发现延庆区主要污染源为生物质燃烧、扬尘污染和机动车尾气排放。  相似文献   

17.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

18.
北京市冬季PM2.5中水溶性重金属污染特征   总被引:6,自引:0,他引:6       下载免费PDF全文
于2011年冬季使用SASS采样器在清华大学采集PM2.5样品,并对其中重金属和水溶性重金属(As?Cd?Cr?Cu?Mn?Pb和Zn等)以及无机离子进行了分析.结果表明,采样期间水溶性重金属浓度较高,As?Cd?Cr?Cu?Mn?Pb和Zn平均浓度依次为8.42,3.18,1.99,7.84,30.82, 49.27,412.81ng/m3.Cd和水溶性As平均浓度超过《环境空气质量标准》中建议浓度限值.水溶性重金属在重污染期间易出现富集,灰霾和采暖期间As?Cd?Cr?Cu?Mn?Pb和Zn平均浓度都有增加趋势.水溶性重金属的逐日变化趋势与重金属和PM2.5有较好的一致性.水溶性重金属在重金属中比重:50%£Zn和As;20%相似文献   

19.
利用连续液化采样器(PILS)-超声雾化器-气溶胶化学组分检测仪(ACSM)联用系统,对深圳市冬季PM2.5中水溶性组分进行在线连续观测,获取高时间分辨率的水溶性有机物(WSOM),SO42-,NO3-,NH4+和Cl-浓度信息以及WSOM的质谱结构信息.分析结果表明:PM2.5中水溶性组分的总质量浓度变化范围为4.0~117μg/m3,平均浓度为20.1μg/m3,其中WSOM(25.2%)和SO42-(22.4%)是最主要的贡献组分.ACSM质谱显示WSOM具有氧化态有机气溶胶(OOA)的质谱特征,其氧碳比(O/C)的平均值达到(0.60±0.09),且WSOM与二次无机离子(SO42-+NO3-)和钾(K)有强相关性,与黑碳(BC)的相关性较弱,表明了观测期间WSOM主要来源于二次反应产生的二次有机气溶胶(SOA)和生物质燃烧,与机动车等一次排放没有明显关系.  相似文献   

20.
为探究邯郸市近5年冬季PM2.5污染特征及来源,于2016~2020年冬季采集PM2.5样品,对8种水溶性无机离子进行分析,利用主成分分析(PCA)模型解析污染源类型,选用后向轨迹和潜在源贡献因子(PSCF)模拟传输轨迹和污染来源.结果表明,2018年冬季PM2.5浓度最高,较2016、2017、2019和2020年升高60.44%、25.46%、91.43%和21.53%;2020年冬季水溶性无机离子(WSIIs)浓度较2016年下降18.86%,WSIIs/PM2.5降至26.69%.夜晚ρ(PM2.5)(110.20~209.65μg·m-3)高于白天(95.21~193.00μg·m-3),NO-3和NH+4浓度夜间涨幅更大,SO42-相反,Cl-浓度和占比逐年下降;2020...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号