首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
2007年4月~2008年3月,利用GC-ECD在线观测系统,在北京上甸子区域大气本底站开展了HCFC-22在线观测,讨论了北京上甸子站HCFC-22浓度水平并初步分析其影响因素.该站大气HCFC-22浓度(摩尔分数,下同)为(278.1±113.6)×10-12.利用逐步逼近回归法进行本底值筛分,本底浓度为(199.5±5.1)×10-12,与北半球同纬度带Mace Head和TrinidadHead本底站观测结果基本一致;非本底浓度为(312.1±121.0)×10-12,出现频率69.8%,表明该站受到较强HCFC-22排放源及输送的影响.上甸子站HCFC-22本底浓度季节变化不明显,但非本底浓度呈现夏高冬低的特点,平均非本底浓度最高月(7月)比最低月(1月)高100.9×10-12,与HCFC-22排放的季节性有关.结合风向分析,该站西南扇区平均浓度(327.3×10-12)比东北扇区(236.2×10-12)高91.1×10-12.HCFC-22高浓度水平主要由W-WSW-SW方向贡献引起,NNE-N-NE方向则使得全年HCFC-22浓度水平明显降低.  相似文献   

2.
利用自组装GC-ECD系统在北京上甸子区域大气本底站开展大气四氯化碳(CCl4)摩尔分数在线观测.2007年4月~2008年3月期间,该站CCl4本底摩尔分数(89.4±0.7)×10-12,与北半球同纬度带Mace Head和Trinidad Head本底站观测结果基本一致;非本底摩尔分数(94.7±5.1)×10-12,出现频率63.6%,表明该站也能捕捉到高摩尔分数CCl4空气团输送信息;CCl4本底摩尔分数变化较小,且没有明显的季节变化;非本底摩尔分数呈现夏高冬低的特点,平均非本底摩尔分数最高月份(6月)比最低月份(1月)高7.6×10-12.应用CO比值相关法初步估算2007年4月~2008年3月我国CCl4排放量约4.7kt·a-1,与文献报道Bottom-up方法估算我国同期CCl4排放量接近;CO比值相关法估算CCl4排放量的不确定性主要来自同源假设及观测站代表性.  相似文献   

3.
上甸子本底站臭氧生成效率的观测研究   总被引:7,自引:2,他引:5  
葛宝珠  徐晓斌  林伟立  王瑛 《环境科学》2010,31(7):1444-1450
2008年3月26日~10月9日在北京上甸子大气本底站开展了O3、NOx、NOy、CO等气体的现场观测和VOCs采样观测.利用观测数据,首次取得该本底站臭氧生成效率(OPE),研究了OPE与NOx和VOCs的关系,探讨了HNO3干沉降对OPE的可能影响及订正方法.结果表明,观测期间逐日OPE值的变化范围为0.2~21.1,平均值为4.9±3.6;晴天的总体OPE值为4.3±1.5;OPE值随NOx浓度的变化基本符合抛物线关系,当NOx14×10-9时,OPE随NOx的增加而增加;当NOx14×10-9时,OPE随NOx的增加而减少;芳香烃和OVOCs与OPE存在密切的正相关关系.HNO3等NOx氧化产物的干沉降对计算的OPE有显著影响,导致计算结果偏高.利用北京市区和上甸子的NOy/CO值可以对观测期间的OPE值进行初步订正,但订正方法尚不够严谨,结果需要进一步验证.未订正的OPE计算值可认为是实际OPE的上限.  相似文献   

4.
在北京上甸子区域大气本底站利用气相色谱/质谱联用(GC-MS)系统对大气中11种氢氟碳化物(HFCs)开展在线观测研究.2018年1~12月,HFC-23、HFC-32、HFC-125、HFC-134a、HFC-143a、HFC-152a、HFC-227ea、HFC-236fa、HFC-245fa、HFC-365mfc、HFC-4310mee本底数据浓度分别为:(31.9±0.4)×10-12、(22.1±1.7)×10-12、(29.3±1.3)×10-12、(110.2±2.4)×10-12、(24.0±0.3)×10-12、(10.3±0.7)×10-12、(1.59±0.04)×10-12、(0.19±0.01)×10-12、(3.30±0.08)×10-12、(1.27±0.03)×10-12、(0.28±0.01)×10-12;本底数据出现频率分别为:34.5%、23.4%、22.5%、24.6%、24.5%、42.5%、24.3%、46.4%、38.3%、68.1%、77.9%;非本底数据浓度分别为:(39.2±11.1)×10-12、(47.7±21.8)×10-12、(38.6±8.7)×10-12、(137.3±15.7)×10-12、(26.1±2.2)×10-12、(15.9±7.0)×10-12、(2.77±1.11)×10-12、(0.25±0.06)×10-12、(4.10±0.97)×10-12、(1.34±0.06)×10-12、(0.30±0.01)×10-12.HFC-32、HFC-125、HFC-134a、HFC-143a、HFC-227ea本底浓度呈线性上升趋势,年增长率分别为:4.4×10-12,3.8×10-12,7.3×10-12,1.0×10-12,0.14×10-12a-1,而HFC-152a呈现明显的季节变化.以CO为示踪物利用示踪物比值相关法估算了HFC-23、HFC-32、HFC-125、HFC-143a、HFC-152a、HFC-236fa、HFC-245fa排放量,分别为6.4,17,14,27,4.0,0.10,1.3kt/a.  相似文献   

5.
上甸子本底站地面臭氧变化特征及影响因素   总被引:17,自引:3,他引:17  
利用TE Model 49C型臭氧监测仪,于2004年1月1日-12月31日,在上甸子本底站进行了地面φ(O3)的连续在线监测.分析了全年φ(O3)的变化特征及其与同期气象要素的相关关系,并对φ(O3)高值日的个例分析进行了验证.结果表明,上甸子本底站地面φ(O3)具有明显的季节变化和日变化规律,并且与同期的气象条件密切相关.主要特征:①夏初φ(O3)较高,6月的平均值达到最高,小时平均最大值可达129.7 μL/m3;而冬季φ(O3)较低,12月的平均值达到最低,小时平均最大值仅为32.7 μL/m3.②日变化趋势较为明显,在4:00-7:00出现最低值,在15:00-18:00出现最高值,变化幅度为夏季最大、冬季较小.③气温与φ(O3)呈显著正相关,夏季相对湿度与φ(O3)呈显著负相关,风向和辐射强度也与φ(O3)及其变化规律呈显著相关关系.   相似文献   

6.
为研究单个站点观测浓度的源汇区域代表性及所在区域的CO2通量特征,利用大气反转模式FLEXPART模拟确定影响上甸子站观测浓度的气团主要来源,利用Carbon Tracker模式反演CO2浓度和通量的时空分布,并通过数值迭代方法和相关性分析方法获取最优印痕函数阈值,得到影响测站CO2浓度的源汇区域范围.其次,将在线观测CO2浓度筛分为本底和非本底浓度,利用FLEXPART模式追踪测站本底和非本底源区,研究发现,本底和非本底源汇区域明显不同并随季节变化.在印痕函数大于一定阈值的潜在源区内,本底和非本底区域净通量变化趋势差异明显,而且在各通量分支中本底区域化石燃料通量较小、生物圈通量较大,非本底区域化石燃料通量较大、生物圈通量较小.通过反演模式能够定量得到影响测站观测浓度的源汇区域及区域通量特征.  相似文献   

7.
利用2005~2010年北京上甸子本底站的PM2.5浓度、气溶胶散射系数(σsp)的连续观测资料,结合后向轨迹分析方法,探讨了不同季节、不同气团传输路径对本底地区气溶胶光学特性的影响.结果表明,污染物水平不仅与气团来向有关,也与气团的运动状态有关.偏南气团路径下的PM2.5浓度和σsp整体高于偏北气团路径,同时运动速度较慢、高度较低的气团路径多对应较高的PM2.5浓度和σsp.春、夏、秋季来自华北平原地区以及冬季来自华北区域北部的慢速、低气团对上甸子的污染水平有重要贡献.沙尘气溶胶多出现在春季,平均气溶胶质量散射效率(αsp)为0.78 m2·g-1.四季平均人为污染气溶胶的αsp为4.00 m2·g-1,其中冬季最高,春季最低.对于人为污染气溶胶来说,春、夏、秋三季的西北偏西路径、偏南路径以及偏北路径中速度较慢的轨迹组均具有较高的αsp(4.0 m2·g-1),表明这些气团路径受人为排放活动影响较大,而冬季各路径的αsp均较高,说明冬季区域内人为排放的影响比较一致.春、夏、秋三季中其他偏北的气团路径主要受到人为污染与沙尘气溶胶的共同影响.  相似文献   

8.
北京上甸子站气相色谱法大气CH4和CO在线观测方法研究   总被引:2,自引:2,他引:2  
参照瓦里关全球大气本底站气相色谱在线观测系统的设计,通过系统调试、测试和参数优化,于2009年在北京上甸子区域大气本底站建立了高精度气相色谱法大气CH4和CO在线观测系统.该系统对CH4和CO的测量精度分别优于0.03%和0.45%,达到世界气象组织全球大气观测计划(WMO/GAW)的质量目标.研究建立了与该系统配套的标气选取方法及运行序列:选取可基本涵盖该站大气CH4和CO浓度范围的2瓶标气作为工作标气,其中CH4浓度分别为2 007.1×10-9、1 809.5×10-9(摩尔分数,下同),CO浓度分别为405.6×10-9、123.8×10-9,在高低浓度工作标气之间穿插分析3次大气样品,能够保证测量的准确度(观测浓度的标准偏差CH4<1.7×10-9、CO<1×10-9),同时可最大程度地节省工作标气.该方法已应用于华北地区本底大气CH4和CO的高精度连续观测.  相似文献   

9.
通过分析2006年8月~2009年7月临安区域大气本底站Flask瓶采样获得的CO2浓度特征,结合碳追踪模式的模拟结果,研究了长三角地区碳源汇变化对CO2浓度的影响.结果表明,临安区域大气本底站的CO2浓度分布在368.3×10-6~414.8×10-6之间,具有较明显的季节波动变化特征,冬季高、夏季低,浓度年较差接近...  相似文献   

10.
2008年奥运期间华北区域大气污染物本底浓度变化与分析   总被引:2,自引:3,他引:2  
吴丹  辛金元  孙扬  王跃思  王普才 《环境科学》2010,31(5):1130-1138
为了解华北区域的大气背景状况,评估污染源限排对区域空气质量的影响以及污染物输送在区域污染中的作用,在2008年奥运期间(6~11月),对华北区域兴隆大气本底监测站主要污染物NOx、SO2、O3和PM2.5进行了连续在线观测,对不同时间段的污染物的浓度水平和日变化特征进行了比较分析,结合地面气象资料和后向轨迹模式初步探讨了污染物的区域传输过程,并对区域不同站点的污染情况进行了初步比较.结果显示,2008年夏季兴隆本底站NOx、SO2、O3与PM2.5平均浓度分别为8.4、10.5、126.0和59.8μg·m-3,秋季平均浓度分别为11.7、17.2、97.5和30.7μg·m-3.奥运时段(2008-08-08~2008-08-24),兴隆NOx、SO2、O3和PM2.5平均浓度分别为6.6、6.8、100.5和33.3μg·m-3,较奥运时段前后平均浓度分别降低了29.0%、46.9%、18.6%和36.5%,与2007年奥运时段同期观测结果相比,NOx浓度下降了62.5%,PM2.5浓度下降了29.0%,奥运时段华北区域空气质量明显改善.在污染物限排之前,兴隆主要污染物的日变化形势都是夜间浓度低,白天浓度不断升高,在傍晚17:00~20:00之间达到峰值,显示了污染物区域输送在兴隆的累积,而污染源排放控制期间污染物白天的积累过程明显减弱,区域输送的污染物含量降低,这些结果表明北京及周边地区污染源的联合控制取得了明显效果.兴隆夏秋季节主要受偏南方向的季风影响,在此方向上对应的污染物浓度值最高,偏南方向上的区域污染输送对兴隆影响较大.将京津冀区域不同站点间的污染物浓度进行比较分析发现,华北区域夏秋季NOx和SO2污染较轻,O3污染不容乐观,PM2.5污染严重,需要引起足够重视.  相似文献   

11.
郭立峰  姚波  周凌晞  李培昌  许林 《环境科学》2013,34(5):2025-2030
2010年5月~2011年5月,利用自组装气相色谱-质谱联用法(GC-MS)和气相色谱-电子捕获检测法(GC-ECD)在线观测系统,在北京上甸子区域大气本底站开展了二氟一氯乙烷(HCFC-142b)在线观测对比实验,GC-MS和GC-ECD系统分析精度分别为0.23%和0.88%.观测期间HCFC-142b浓度变化范围约为21×10-12~355×10-12;通过独立样本T检验P>0.05,表明两种方法获得的HCFC-142b浓度数据无显著性差异;对两套系统观测浓度数据的差值分析表明,造成两套系统观测浓度间微小差别的主要因素是空气样品时间分辨率和观测精度.利用局部近似回归法进行本底值筛分,GC-MS和GC-ECD法获得的本底浓度均值差、中值差、25和75百分位数值差均优于系统观测精度.两种方法捕获HCFC-142b污染过程一致,污染浓度均具有夏秋高冬低的特点;两种方法观测HCFC-142b污染浓度的年变化趋势一致.  相似文献   

12.
龙凤山本底站大气CO2数据筛分及浓度特征研究   总被引:1,自引:0,他引:1  
栾天  周凌晞  方双喜  姚波  王红阳  刘钊 《环境科学》2014,35(8):2864-2870
针对黑龙江龙凤山区域大气本底站2009年1月~2011年12月低层(离地10 m)和高层(离地80 m)大气CO2在线观测数据,选取低层数据重点开展研究,分析地面风向和风速等因素对观测CO2浓度的影响.结果表明,龙凤山低层大气CO2浓度明显受局地源汇影响,其与高层观测结果差异在白天08:00~17:00相对较小,小于(0.5±0.5)×10-6(物质的量比).春、夏和秋这3个季节E-ESE-SE-SSE扇区来向的地面风会明显抬升大气CO2浓度,而冬季N-NNW-NW-WNW扇区CO2浓度明显较高.该站4个季节近地面CO2浓度随着风速增大而逐渐减小,在冬季尤为明显.结合日变化及地面风的影响,对低层观测数据进行初步本底/非本底筛分,筛选出代表东北区域混合均匀CO2水平的本底数据占总数据的30.7%.本底CO2浓度季节变化显示该站大气CO2浓度呈现冬季高夏季低的趋势,季振幅约为(36.3±1.4)×10-6,明显大于同期WMO/GAW同纬度站点观测结果,2009~2011年龙凤山大气CO2平均增长率为2.4×10-6a-1.  相似文献   

13.
We present in-situ measurements of atmospheric sulfur hexafluoride(SF6) conducted by an automated gas chromatograph–electron capture detector system and a gas chromatography/mass spectrometry system at a regional background site, Shangdianzi,in China, from June 2009 to May 2011, using the System for Observation of Greenhouse gases in Europe and Asia and Advanced Global Atmospheric Gases Experiment(AGAGE)techniques. The mean background and polluted mixing ratios for SF6 during the study period were 7.22 × 10-12(mol/mol, hereinafter) and 8.66 × 10-12, respectively. The averaged SF6 background mixing ratios at Shangdianzi were consistent with those obtained at other AGAGE stations located at similar latitudes(Trinidad Head and Mace Head), but larger than AGAGE stations in the Southern Hemisphere(Cape Grim and Cape Matatula). SF6 background mixing ratios increased rapidly during our study period, with a positive growth rate at 0.30 × 10-12year-1. The peak to peak amplitude of the seasonal cycle for SF6 background conditions was 0.07 × 10-12, while the seasonal fluctuation of polluted conditions was 2.16 × 10-12. During the study period, peak values of SF6 mixing ratios occurred in autumn when local surface horizontal winds originated from W/WSW/SW/SWS/S sectors, while lower levels of SF6 mixing ratios appeared as winds originated from N/NNE/NE/ENE/E sectors.  相似文献   

14.
我国4个WMO/GAW本底站大气CH4浓度及变化特征   总被引:2,自引:4,他引:2  
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CH4在线观测系统,于2009~2010年在青海瓦里关、浙江临安、北京上甸子和黑龙江龙凤山这4个世界气象组织全球大气观测网(WMO/GAW)大气本底站对大气CH4进行了在线观测.临安站在所有季节中CH4浓度都表现出类似的日变化趋势,即浓度在每日~05:00(北京时间)达到最高值,在~14:00为最低.夏季龙凤山站CH4浓度表现出类似的规律,但其日变化振幅较大,达到216.8×10-9(摩尔分数,下同).上甸子站春、秋、冬季CH4浓度呈现类似变化趋势,但夏季日平均值较高,在晚间~20:00达到最高值,瓦里关站四季CH4浓度日变化均不明显.3个区域本底站(临安、上甸子和龙凤山)全年CH4本底浓度存在明显的变化,临安站CH4本底浓度在7月达到全年最低水平.龙凤山站则表现出相反的趋势,在8月达到全年最高值,其全年浓度表现出"W"型变化.冬季龙凤山和上甸子站CH4浓度高于春季和秋季.瓦里关站全年浓度变化较小,月平均浓度振幅仅为11.5×10-9.临安、上甸子和龙凤山3个区域本底站夏季CH4非本底数据占总数据的比例>70%.为分析气团传输的影响,对4站夏季高浓度时刻(瓦里关:CH4>1 870×10-9,龙凤山CH4>2 100×10-9,临安CH4>2 150×10-9,上甸子CH4>2 050×10-9)对应的气团轨迹进行聚类分析表明,夏季出现的高浓度CH4观测数据可能主要由气团传输所引起.  相似文献   

15.
气象因素对长三角背景地区甲烷浓度的影响分析   总被引:3,自引:1,他引:2  
通过分析2009年1月~2011年12月临安区域大气本底站在线观测获得的CH4浓度,研究地面风向、地面风速、地面气温、日照等气象因素对长三角背景地区CH4浓度的影响.结果表明,临安站CH4浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在19.0×10-9~74.7×10-9(摩尔分数)之间;季节变化特征表现为春季低、秋季高,月均浓度分布在1 955.7×10-9~2 036.2×10-9之间.NE~SSE风向上CH4浓度较高,SW~NNW风向上CH4浓度较低;地面风速越大,CH4浓度越低;地面气温升高,CH4浓度出现先升后降的分布;随着日照时数的增加,CH4浓度亦表现为先升后降的分布特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号