首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The energy of the body components and the energy costs of spawning and overwintering in the bay anchovy Anchoa mitchilli, the most abundant fish in Chesapeake Bay, were studied to determine seasonal variability during the different stages of its life cycle. Bimonthly samples were collected by trawl from April 1990 through October 1991. Fish condition and body energy levels fluctuated seasonally, and were related to anchovy size. Energy equivalents (cal g-1 dry wt) was highest in December, before the overwintering period. The somatic weight component increased by 32 to 33% and total body weight by 26% during the spawning season, indicating that feeding not only met energy requirements of daily spawning but also provided surplus energy for growth. The overwintering loss of energy was 33 to 35% of total body calories, and was primarily derived from deposit fat in somatic and visceral tissues.  相似文献   

2.
In the spring of 1989, an experimental study of the spawning behaviour of Calanus finmarchicus was carried out in Malangen, northern Norway. Here, a single cohort of females reproduce from mid-March to May, approximately coinciding with the wax and wane of the spring phytoplankton bloom. An evaluation of population characteristics such as the proportion of adults, sex ratio, as well as gonad maturation and daily productivity of the females clearly reveals three phases within the population's reproductive period. In between incline and decline, the highest spawning rates (on average >20 eggs female-1 d-1, equivalent to 5.7% body C d-1) occur after the males have disappeared from the population and almost all females have mature gonads. During this period, the ratio of adults to copepodid Stage Vs changes from dominance of adults to that of CVs. Although first egg production was observed prior to the phytoplankton increase, it is suggested that the onset of the phytoplankton spring bloom in the first few days of April enhances the final maturation of ovaries in the females and therefore triggers the onset of the main spawning period. The clutch sizes (max. 95 eggs clutch-1) vary with the age of the females, while the spawning frequencies depend on the available food quantities. The overlap of an estimated minimal 4 wk spawning period for the individuals leads to a main reproductive phase for the population of ca. 3 wk, during which time mean clutch sizes and spawning frequencies are maximal (highest average clutch size: 70 eggs female-1 clutch-1, 100 to 60% of the females spawning). This period ends before the end of the phytoplankton bloom. Calculated by stepwise interpolation and summation of the mean daily egg production in the population, an average female produced ca. 600 eggs during the spring bloom in Malangen 1989. We suggest that reproduction and population development of C. finmarchicus in spring follows a reproducible pattern for a given temperature regime and non-limiting food conditions. In the case of clearly identifiable cohorts, it seems possible to trace the state of reproduction by evaluating population parameters.  相似文献   

3.
Summary Symphodus tinca is a common near-shore Mediterranean labrid fish in which females may sometimes spawn their eggs over hundreds of square meters, or alternatively spawn into well-defined algal nests. Eggs spawned in either manner are fertilized, but widely scattered eggs receive no parental care, whereas eggs spawned into nests are usually guarded by the male until they hatch. Here, I report weight changes of individual marked fish that engaged in a variety of different reproductive behaviors during three breeding seasons. Males gained weight at 0.15% per day outside the spawning season, and added 29–78% to their overall body weight between reproductive seasons, even following substantive weight losses in a spawning season (up to 20% among nesting males). Nesting and nest-guarding males lost an average of 0.32% and 0.41% of their body weight per day in 1986 and 1987. This cost is four times greater than reproduction for nonnesting males, which registered a 0.03% daily weight gain. Actively spawning females lost 0.06% of their body weight daily during the spawning season. While long-term growth rates did not appear to be substantially affected by reproduction in either sex or by parental care in males, present work does not exclude the possibility that such long-term effects may exist.  相似文献   

4.
Plankton collected at discrete depths in Santa Monica Bay, California, USA, during January 1982 were examined for fish eggs and larvae that had been attacked or consumed by zooplankton. The bongo net remained open for only 3 min and samples were preserved within 5 min of capture. Juvenile and adult fishes that had been captured by otter trawl and preserved within 20 min of capture were examined for ingested fish eggs and larvae. Three copepods (Corycaeus anglicus, Labidocera trispinosa, and Tortanus discaudatus), one euphausid larva (Nyctiphanes simplex), one amphipod (Monoculoides sp.), and an unidentified decapod larva were found attached to fish larvae in the preserved plankton samples (attachment to 23% of the fish larvae was observed in one sample). Overall, about 5% of the white croaker (Genyonemus lineatus) larvae and 2% of the northern anchovy (Engraulis mordax) larvae had attached zooplankton predators. Most fish larvae with attached zooplankton predators were small. We found no indication of zooplankton predation on fish eggs. Few fish eggs and larvae were found in the digestive tracts of juvenile or adult fishes, and the ingested fish larvae were relatively large. The discussion considers apparent preyspecificity of the zooplankton predators as well as potential biases that may be associated with preserved samples collected by nets.  相似文献   

5.
Recent studies have indicated that populations of gelatinous zooplankton may be increasing and expanding in geographic coverage, and these increases may in turn affect coastal fish populations. We conducted trawl surveys in the northern California Current and documented a substantial biomass of scyphomedusae consisting primarily of two species (Chrysaora fuscescens and Aurelia labiata). Spatial overlap of these jellyfish with most pelagic fishes, including salmon, was generally low, but there were regions of relatively high overlap where trophic interactions may have been occurring. We compared feeding ecology of jellyfish and pelagic fishes based on diet composition and found that trophic overlap was high with planktivorous species that consume copepods and euphausiid eggs such as Pacific sardines (Sardinops sagax), northern anchovy (Engraulis mordax), Pacific saury (Cololabis saira), and Pacific herring (Clupea pallasi). Moreover, isotope and diet analyses suggest that jellyfish occupy a trophic level similar to that of small pelagic fishes such as herring, sardines and northern anchovy. Thus jellyfish have the potential, given their substantial biomass, of competing with these species, especially in years with low ecosystem productivity where prey resources will be limited.  相似文献   

6.
Data on the diet, feeding habits and daily rations of Hoplostethus mediterraneus Cuvier, 1829 in the bathyal eastern Ionian Sea (Mediterranean Sea) are presented. A total of 430 specimens collected by bottom trawls at depths ranging from 473 to 603 m during four 24-h day–night sampling cycles covering the four annual seasons was examined. H. mediterraneus diet consisted of pelagic and vagile epibenthic prey, mainly crustaceans, and was dominated by benthopelagic natantian decapods (83.35% IRI, index of relative importance). Seasonal changes in diet were apparent and related to seasonal fluctuations in suprabenthic and zooplanktonic prey in the environment. Diel patterns in stomach fullness and trends in diel feeding cycles are discussed in relation to the vertical migratory movements of available prey (i.e. suprabenthos and zooplankton). Daily-ration estimates were determined by evacuation-rate models and ranged from 0.143% to 0.397% WW/WW. Overall, daily-ration estimates were within the range of the daily consumption of other deep-sea fish. Deduced from diet contents, we found a constant gross energy intake (305–316 kcal g–1) during all seasons. As a possible response to the reproductive peak of mature females observed in summer, H. mediterraneus increases its food consumption, which, in turn, is coupled with an increase in food availability.Communicated by S.A. Poulet, Roscoff  相似文献   

7.
Ammonium cycling by Antarctic zooplankton in winter   总被引:1,自引:0,他引:1  
Elemental composition and excretion rates of ammonium-nitrogen of zooplankton, ranging over more than five orders of magnitude in body size, were measured in mid-winter in coastal waters west of the Antarctic Peninsula. Excretion rates were constant for the initial 12 h of incubation in the four species tested, and experimental stocking densities of up to 126 mg dry wt l-1 did not cause variability in the rate of ammonium production. Weight-specific excretion rates of freshly caught Euchaeta antarctica, Conchoecia sp., Thysanoessa macrura, Euphausia superba, and early stage copepodites of Metridia gerlachei were not significantly different from those reported in summer. However, adult copepods of M. gerlachei and Calanoides acutus appear to have reduced their nitrogen metabolism during winter. Turnover rates of body nitrogen increased with diminishing size, ranging from <0.5% body N d-1 for large E. superba to >7% body N d-1 for CII and CIII copepodites of M. gerlachei. Only the nitrogen turnover rates of C. acutus were sufficiently low as to suggest that it could survive the entire austral winter without feeding. Phytoplankton and bacterioplankton were virtually absent in both the water column and the sea-ice. We conclude that carnivory is the dominant trophic mode of the pelagic zooplankton community in Antarctica during winter. Production of ammonium-nitrogen by the zooplankton community probably accounts for M10% of the total ammonium regenerated prior to the annual spring bloom.  相似文献   

8.
A. Kellermann 《Marine Biology》1990,106(2):159-167
The feeding dynamics of larvae of the Antarctic fishNototheniops larseni were analyzed from data collected over three years in Bransfield Strait and adjacent waters (Antarctica). Seasonal feeding was examined from 1977/1978 (November–March). The diel feeding cycle was investigated during a 96 h station established in February 1976, while food selection was analyzed using larvae and zooplankton samples collected in February 1982. Hatching occurs in early spring, and larvae fed on eggs of calanoid copepods and on cyclopoid copepods. Copepod eggs were the principal food near the pack ice, and cyclopoids in open waters. Cyclopoids were the staple food in summer. Eggs of the Antarctic krillEuphausia superba were ingested selectively and formed major portions of the larval summer diet in neritic (Joinville Island) and oceanic (Elephant Island) spawning areas ofE. superba. In the fall, copepods predominated in the diets. Most abundant and most frequently ingested prey in summer and fall wereOncaea spp. Feeding commenced at dawn and continued at least until dusk. Krill eggs were taken chiefly during morning hours and egg incidence declined during the day, suggesting that eggs were ingested soon after spawning. Prey size at the onset of feeding was estimated as 0.130 to 0.330 mm. Size-selective feeding was evident in small larvae, while in larger larvae median prey length remained constant. High feeding incidence among yolk-sac larvae in spring, high overall feeding incidence in summer, and size-selective foraging of small larvae suggested favorable feeding conditions in the 1977/1978 season. Yolk-absorption times in Antarctic fish larvae vary on a scale of weeks and may be further retarded due to early feeding. Hence, year-to-year variability of yolk incidence inN. larseni indicated variable biotic environments of early feeding larvae rather than temporal shifts of hatching periods. As hatching periods are constant between years in contrast to the variable retreat of the pack ice and subsequent onset of the production cycle in space and time, maternal yolk reserves are probably utilized to compensate for such variations.  相似文献   

9.
Fish eggs and larvae can be separated from invertebrate zooplankton by isopycnic centrifugation in gradients of sucrose or silica. Preserved samples of invertebrate zooplankton, fish eggs, and fish larvae, representing a typical assortment of marine plankton, were layered over linear gradients of 25 to 60% w/w (weight/weight) sucrose or 0 to 15% w/w silica (as Ludox AM) in 100 c3 swinging buckets, and centrifuged for 1 h at 1000 rpm (revs per minute). In sucrose gradients, the invertebrate zooplankton were confined to the two ends of the gradient, while 85% of the fish eggs were recovered from an intermediate zone (27.5 to 55% w/w). In Ludox AM, the fish eggs banded in a narrow region between 2 and 3% w/w, while fish larvae banded at the bottom of the gradient between 10 and 14% w/w. Of the 6 dominant classes of zooplankton, only Salpa overlapped appreciably with the fish eggs and none overlapped with the fish larvae. Of the gradient materials tested, Ludox AM offers the most advantages; sucrose may also be useful for subfractionation. Gradients of sodium bromide and dextran have been found to be totally unsuitable.Paper of the Journal Series, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08903, USA.  相似文献   

10.
The feeding ecology of lanternfish Benthosema pterotum (Alcock) from the north Arabian Sea, Mozambique and the Bay of Bengal was studied. Samples were collected on cruises carried out by R.V. Dr. Fridtjof Nansen during the period 1978 to 1983. A wide variety of zooplankton organisms were identified in the diet of B. pterotum with crustanceans dominating the diet. Copepods constituted ca. 40 to 90% of the diet. Dry weight analyses of the stomach contents from the Gulf of Oman in February 1983 showed copepods to be 35 to 55% in weight (average in samples). Ontogenetic differences were observed in the diet. Prey size increased as the fish length increased, but the largest fish did not exclude the smaller prey organisms from their diet. Regional variation in diet was also shown in B. pterotum. The degree of filling and the state of digestion of stomach contents revealed that this species feeds intensively at night in the epipelagic layer. All copepods indentified were epipelagic species, providing additional evidence of diurnal pattern in the feeding chronology of B. pterotum. Identification of copepods from the Gulf of Oman in February 1983, revealed that herbivorous species dominated in biomass. Quantitative analyses show that B. pterotum probably have a daily food intake of ca. 4.5% of the body weight.  相似文献   

11.
H. -J. Hirche 《Marine Biology》1989,103(3):311-318
Egg production of single female Calanus glacialis Jaschnov fed with Thalassiosira antarctica at super-abundant concentrations (>300 g C l-1) was determined over several weeks. Experiments were performed directly after collection from the East Greeland Current in June 1987 and 1988, and during resumed feeding after long-term starvation over 4 (October 1988), 4.5 (October 1987) and 6.5 (January 1988) mo. In addition, in June 1987, short-term starvation experiments of 5 and 15 d were conducted. Egg production was closely related to feeding in all experiments. While directly after collection eggs were produced within a few days, it took 2 wk (October 1987 and 1988) and 10 d (January 1988), respectively, to resume egg production after long-term starvation. During long-term starvation periods eggs were not laid. The decrease in total egg production with duration of starvation was due to decreasing clutch size and increasing spawning interval. In contrast, short-term starvation experiments only affected spawning interval. Interannual variability in egg production was high, with much higher clutch sizes in 1988. Average production rates in June 1988 correponded to 5% body C female-1 d-1, the maximum was 7.4% (1 274 eggs in 23 d). Carbon content of eggs was 0.40 g egg-1. C. glacialis is well adapted to pulsed food events in the Arctic by its longevity; its ability to preserve its reproductive potential over several months; its rapid mobilization of ovaries; and by its high egg production rates. The implication of prolonged spawning capacity on life cycle studies is discussed.  相似文献   

12.
Size appears to be an important parameter in ecological processes. All physiological processes vary with body size ranging from small microorganisms to higher mammals. In this model, five state variables — phosphorus, detritus, phytoplankton, zooplankton and fish are considered. We study the implications of body sizes of phytoplankton and zooplankton for total system dynamics by optimizing exergy as a goal function for system performance indicator. The rates of different sub-processes of phytoplankton and zooplankton are calculated, by means of allometric relationships of their body sizes. We run the model with different combinations of body sizes of phytoplankton and zooplankton and observe the overall biomass of phytoplankton, zooplankton and fish. The highest exergy values in different combinations of phytoplankton and zooplankton size indicate the maximum biomass of fish with relative proportions of phytoplankton and zooplankton. We also test the effect of phosphorus input conditions corresponding to oligotrophic, mesotrophic, eutrophic system on its dynamics. The average exergy to be maximized over phytoplankton and zooplankton size was computed when the system reached a steady state. Since this state is often a limit cycle, and the exergy copies this behaviour, we averaged the exergy computed for 365 days (duration of 1 year) in the stable period of the run. In mesotrophic condition, maximum fish biomass with relative proportional ratio of phytoplankton, zooplankton is recorded for phytoplankton size class 3.12 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume). In oligotrophic condition the highest average exergy is obtained in between phytoplankton size 1.48 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume), whereas in eutrophic condition the result shows the highest exergy in the combination of phytoplankton size 5.25 (log V μm3 volume) and zooplankton size 4 (log V μm3 volume).  相似文献   

13.
Using high resolution vertical distributions of chlorophyll and zooplankton, and field observations of photosynthetic parameters, it is shown that on the Scotian Shelf the peak in the vertical profile of primary production generally lies shallower than the chlorophyll maximum, but coincides with the peak in the vertical profile of copepods. A simple numerical model shows that the 24th carbon budget can be balanced using the best available estimates of the rate constants for phytoplankton growth, zooplankton grazing and vertical migration. This calculation is very sensitive to the size of the weight-specific ration and favors values of ~40% d?1 for it.  相似文献   

14.
Knowledge of the pelagic vertical distribution of fish eggs is central for several aspects of fisheries science including fisheries recruitment and egg production studies. In modelling egg vertical distributions, variation in fish egg density is an important issue. Though variation in egg density between individual eggs has been reported, evidence for significant spatial variation in egg density is novel. The present study provides evidence that egg density of anchovy (Engraulis encrasicolus) varies spatially across spawning sites in the Bay of Biscay, depending on the regional scale variation in sea water properties due to river discharge. We measured the density of the eggs using a density gradient column at 17 stations in 2005 and 2006 as well as their diameter. At station, the variability in the individual egg density was statistically distributed according to a Gaussian probability function. Significant variation in the mean egg density was observed across stations. Mean egg density displayed a significant correlation with sea surface salinity. Results are discussed in light of the mechanisms determining the egg density.  相似文献   

15.
A complete energy balance equation was estimated for the common octopus Octopus vulgaris at a constant temperature of 20°C, fed ad libitum on anchovy fillet (Engraulis encrasicolus). Energy used for growth and respiration or lost with faeces and excreted ammonia was estimated, along with total energy consumption through food, for six specimens of O. vulgaris (with masses between 114 and 662 g). The energy balance equation was estimated for the specimens at 10-day intervals. During each 10-day interval, food consumed, body mass increase and quantity of faeces voided were measured. The calorific values of octopus flesh, anchovy flesh and faeces were measured by bomb calorimetry. Oxygen consumption and ammonia excretion rates were monitored for each specimen during three 24-h experiments and daily oxygen consumption and ammonia excretion were estimated. It was found that 58% of the energy consumed was used for respiration. The amount of energy invested in somatic and gonadal growth represented 26% of the total energy budget. The energy discarded through faeces was 13% of consumed energy. The estimated assimilation efficiency (AE) values of O. vulgaris feeding on anchovy (80.9–90.7%) were lower than the AE values estimated for other cephalopod species with different diets of lower lipid content such as crabs or mussels. Specific growth rates (SGR) ranged 0.43–0.95 and were similar to those reported for other high-lipid diets (bogue, sardine) and lower than SGR values found for low-lipid, high-protein diets (squid, crab, natural diet). Ammonia excretion peak (6 h after feeding) followed the one of oxygen consumption (1 h after feeding). The values of atomic oxygen-to-nitrogen (O:N) ratio indicated a protein-dominated metabolism for O. vulgaris.  相似文献   

16.
Temporal variation in the diet and chick growth of rhinoceros auklets (Cerorhinca monocerata), on Teuri Island, Sea of Japan, was studied to understand how local marine environmental changes affect the reproduction of this piscivorous seabird. The food delivered by parents to chicks was sampled every 1-2 weeks from late May to July, 1994-1998. Overall, the diet of nestling rhinoceros auklets consisted of (by mass) 61% Japanese anchovy (Engraulis japonicus), 18% Japanese sand lance (Ammodytes personatus), 18% Japan Sea greenling (Pleurogrammus azonus), 2% other fish and 1% squid. Among years, the contribution of anchovy ranged from 16% to 93%. Once anchovy occurred in the diet, it dominated (80% on average) thereafter. Accordingly, when anchovy appeared in the diet early in the chick-rearing season (1994, 1998), the contribution of anchovy overall was large. The first appearance of anchovy in the diet of auklets late in the summer of 1997 was possibly related to negatively anomalous sea-surface temperature. Food loads composed of anchovy (34.0 g) were heavier than those of sand lance (22.5 g) and greenling (28.5 g). The energy density of anchovies also was higher: 6.3 kJ g-1 wet mass compared to 0+ greenling (4.78 kJ g-1) and 0+ sand lance (3.78 kJ g-1). Thus, a high proportion of anchovy in the diet resulted in high food load mass, high daily growth rates of chicks and high fledging success. This study highlighted the importance of the time of arrival of migratory high-lipid prey, which is influenced by local oceanographic conditions, to the reproductive performance of a piscivorous seabird.  相似文献   

17.
Marine cladocerans are important contributors to the zooplankton community of tropical and temperate coastal ecosystems during the warmer months, when they show explosive population growth. Despite this fact, little information is available on their ecology compared with the extensive studies on their freshwater relatives. The main objective of this study was to determine the in situ feeding and growth rates, and life history parameters of Penilia avirostris in São Sebastião Bay (Brazil) during austral summer 2004, as a premise to understand the advantages of this cladoceran in oligotrophic waters. Culture development experiments, monitored for a period of 12 days, showed that maximum juvenile release occurred after 2 days, and that the development duration of a complete cohort was around 9 days. From bottle incubation grazing experiments, significant ingestion rates upon flagellates, ciliates, dinoflagellates and diatoms were detected. Flagellates were the most important contributors to P. avirostris diet (ca. 80%). P. avirostris ingested between 28 and 97% of its own carbon biomass per day (daily ration) and individual growth rates of this marine cladoceran (0.10–0.24 d?1) increased with prey availability. The combination of ingestion rates of natural prey and growth rates provided gross growth efficiencies (GGE) of 15–53%, on a carbon basis. Our results suggest that P. avirostris has similar GGE to copepods, although at low food conditions the values for the marine cladocerans seems slightly higher. However, this characteristic alone does not explain the explosive growth and community dominance shown by P. avirostris. Therefore, other traits related to the reproductive biology of the species, such as short generation time, parthenogenetic reproduction, and continuous somatic growth, seems to be mostly responsible for the success of P. avirostris in many marine ecosystems during their seasonal occurrence.  相似文献   

18.
Diel swimming behaviors of juvenile anchovies (Anchoa spp.) were observed using stationary hydroacoustics and synoptic physicochemical and zooplankton profiles during four unique water quality scenarios in the Neuse River Estuary, NC, USA. Vertical distribution of fish was restricted to waters with DO greater than 2.5 mg O2 l−1, except when greater than 70% of the water column was hypoxic and a subset of fish were occupying water with 1 mg O2 l−1. We made the prediction that an individual fish would select a swim speed that would maximize net energy gain given the abundance and availability of prey in the normoxic waters. During the day, fish adopted swim speeds between 7 and 8.8 bl s−1 that were near the theoretical optimum speeds between 7.0 and 8.0 bl s−1. An exception was found during severe hypoxia, when fish were swimming at 60% above the optimum speed (observed speed = 10.6 bl s−1, expected = 6.4 bl s−1). The anchovy is a visual planktivore; therefore, we expected a diel activity pattern characteristic of a diurnal species, with quiescence at night to minimize energetic costs. Under stratified and hypoxic conditions with high fish density coupled with limited prey availability, anchovies sustained high swimming speeds at night. The sustained nighttime activity resulted in estimated daily energy expenditure over 20% greater than fish that adopted a diurnal activity pattern. We provide evidence that the sustained nighttime activity patterns are a result of foraging at night due to a lower ration achieved during the day. During severe hypoxic events, we also observed individual fish making brief forays into the hypoxic hypolimnion. These bottom waters generally contained higher prey (copepod) concentrations than the surface waters. The bay anchovy, a facultative particle forager, adopts a range of behaviors to compensate for the effects of increased conspecific density and reduced prey availability in the presence of stratification-induced hypoxia.  相似文献   

19.
The use of the egg production rate of herbivorous copepods as an important parameter for understanding population dynamics and as an index of secondary production requires knowledge of the regulatory mechanisms involved and of the response to changes in food concentrations and temperature. Furthermore, the effects of season and generation on egg production have to be studied. In this context data are presented for Calanus finmarchicus from the northern North Atlantic. Prefed and prestarved females were exposed to different concentrations of the diatom Thalassiosira antarctica over 1 to 2 wk at 0 or 5 °C, and egg deposition was controlled daily. Egg production increased with higher food concentrations, but much less when prestarved. The effect of temperatures between −1.5 and 8 °C on egg production was studied in females maintained at optimum feeding conditions. Egg production rate increased exponentially over the whole temperature range by a factor of 5.2, from 14.2 to 73.4 eggs female−1 d−1, and carbon-specific egg production by 4, from 2.1 to 8.5% body C d−1. The response to starvation was also temperature dependent. In both the temperature and feeding experiments egg production rate was regulated mainly by changes of the spawning interval, while changes of clutch size were independent of experimental conditions. Different responses to optimum feeding conditions were observed in females collected in monthly intervals on three occasions between March and May. The March females deposited more clutches than the April and May females. In May, >50% of the females did not spawn at all. Maximum egg production rates were never >25% of the rate expected at 5 °C, indicating endogenous control of egg production in addition to food and temperature effects. Received: 4 August 1996 / Accepted: 11 September 1996  相似文献   

20.
We determined feeding rates of the hydromedusan Nemopsis bachei L. Agassiz in the mesohaline region of Chesapeake Bay, USA during the spring of 1989 and 1990 from gut contents, digestion rates and abundances of medusae and zooplankton. The medusae consumed primarily copepodites of Acartia tonsa, selecting against naupliar stages. The peak abundance of N. bachei medusae was in April to May, when densities averaged more than 10 m-3. Medusa densities were similar in both years, but were greatest (maximum of 132 medusae m-3) along a southern transect sampled only in 1990. At peak densities, N. bachei medusae consumed 30% d-1 of the copepodite standing stocks, but they consumed <1% d-1 at the lower densities typical of late May or early June. The predation effects were generally greater than those reported for other hydromedusan species. But even at peak predation, N. bachei medusae could not have controlled or reduced A. tonsa copepod populations, which had a production rate of 85% d-1 at that time. Medusa feeding rates were highest at nighttime, and were correlated with prey density in the field, but not in the laboratory.Communicated by J. Grassle, New Brunswick  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号