首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以粉煤灰为吸附剂去除溶液中的磷,考察了其吸附除P动力学特征、热力学特征以及溶液初始pH和粉煤灰投加量对吸附除P效果的影响,并对其吸附除P机理做了初步探讨。结果表明,在给定实验条件下,粉煤灰对P具有较好的去除效果,随着初始P浓度从10 mg/L升高到80 mg/L,平衡吸附量为0.46~2.44 mg P/g粉煤灰,吸附效率从92.2%降低至61.1%;对不同浓度的含P溶液,粉煤灰最适用量为0.6~1.5 g粉煤灰/mg P;相同反应条件下,当温度由25℃升高到45℃时,P初始吸附速率提高了3倍;粉煤灰对P的吸附过程能够较好地拟合Langmuir、Freundlich及D-R吸附等温模型,相关系数均在0.98以上。通过对吸附饱和的粉煤灰进行解析实验发现,初始P浓度较低(<50 mg/L)时,以化学吸附为主,而在初始P浓度较高(>80 mg/L)时,则以物理吸附为主。  相似文献   

2.
Wang J  Ban H  Teng X  Wang H  Ladwig K 《Chemosphere》2006,64(11):1892-1898
Many coal-fired power plants are implementing ammonia-based technologies to reduce NO(x) emissions. Excess ammonia in the flue gas often deposits on the coal fly ash. Ammonia can form complexes with many heavy metals and change the leaching characteristics of these metals. This research tends to develop a fundamental understanding of the ammonia impact on the leaching of some heavy metals, exemplified by Cu(II) and Cd(II), under different pH conditions. Batch results indicated that the adsorption is the main mechanism controlling Cu(II) and Cd(II) leaching, and high concentrations of ammonia (>5,000 mg/l) can increase the release of Cu(II) and Cd(II) in the alkaline pH range. Based on the chemical reactions among fly ash, ammonia, and heavy metal ion, a mathematical model was developed to quantify effects of pH and ammonia on metal adsorption. The adsorption constants (logK) of Cu(2+), Cu(OH)(+), Cu(OH)(2), and Cu(NH(3))(m)(2+) for the fly ash under investigation were respectively 6.0, 7.7, 9.6, and 2.9. For Cd(II), these constants were respectively 4.3, 6.9, 8.8, and 2.6. Metal speciation calculations indicated that the formation of less adsorbable metal-ammonia complexes decreased metal adsorption, therefore enhanced metal leaching.  相似文献   

3.
Manganese-coated activated carbon (MCAC) and activated carbon were used in batch experiments for the removal of cadmium(II) and copper(II). Results showed that uptake of Cd(II) and Cu(II) was unaffected by increases in pH (3.0 to 8.5) or concentration (1 to 20 mg/L). Increased ionic strength (from 0.001 to 1 M NaNO3), however, significantly affected the uptake of Cd(II); adsorption of Cu(II) was not affected. Freundlich adsorption isotherm results indicated that MCAC possessed higher sorption capacity than activated carbon. Second-order rate constants were found to be 0.0386 for activated carbon and 0.0633 g/mg x min for MCAC for Cd(II) and 0.0774 for AC and 0.1223 g/mg x min for MCAC for Cu(II). Column experiments showed that maximum sorption capacity of MCAC was 39.48 mg/g for Cu(II) and 12.21 mg/g for Cd(II).  相似文献   

4.
用石英砂、石灰、水泥和铝粉等材料制作人工湿地填料,并对自制填料、粉煤灰块和钢渣等6种填料的等温吸附特性进行研究,发现自制填料在较低与较高浓度P溶液中吸附率都最高,在P浓度为(10~50 mg/L)时,平均吸附率达96.8%,其次是粉煤灰和钢渣,分别为87.6%和85.4%;填料对P的理论饱和吸附量分别为:自制填料(2 413.6 mg/kg)>粉煤灰块(1 605.8 mg/kg)>钢渣(1 277.5 mg/kg)>碎砖(451.6 mg/kg)>碎石(182.5 mg/kg)>砾石(18.4 mg/kg);填料中金属矿物成分含量高、比表面积大,是除P效果好的原因。  相似文献   

5.
粉煤灰吸附性能研究是当前环境科学领域中的一个研究热点 ,但原状粉煤灰的吸附效果不理想。本文报道的用煅烧 -碱溶法制得类沸石吸附剂的比表面积为 112 .6m2 / g、孔隙率为 83 .1% ,分别是改性前的 40 .2 2和 1.67倍。用此类沸石吸附剂来处理浓度为 2 0 0mg/L的模拟含铅废水 ,去除率为 84.87% ,吸附容量为 3 3 .94mg/ g ,分别是改性前的3 1.13和 3 1.42倍 ,处理效果优于市售一级活性炭。并用 0 .1mol/L的HCl溶液和饱和NaCl溶液再生此吸附剂 ,解吸率达到了 98%以上 ,此再生的类沸石吸附剂处理含铅废水的去除率也达到了 83 %以上  相似文献   

6.
改性粉煤灰处理低浓度含磷废水的研究   总被引:1,自引:0,他引:1  
以酸改性粉煤灰为吸附剂,处理低质量浓度(1 mg/L左右)磷酸盐溶液,探讨了改性剂的种类、改性剂用量、吸附剂用量、反应时间、pH以及温度对除磷效果的影响.结果表明:(1)经过酸改性后粉煤灰的磷去除率显著提高,而且硫酸改性粉煤灰的除磷效果更好,磷去除率最高可达97.68%.(2)最佳条件:选择硫酸用量为5 mL/g进行改性,硫酸改性粉煤灰投加量为2.0g,反应时间为60 min,pH为7.2~10.8,温度为25℃(即室温).(3)改性粉煤灰对磷的吸附更符合Freundlich吸附等温模型,既有物理吸附,也有化学吸附,并以Ca、Mg氧化物与磷形成磷的沉淀物为主.  相似文献   

7.
BACKGROUND, AIMS AND SCOPE: Hexavalent chromium [Cr(VI)] cannot react with either carbonate or hydroxide to form chromium precipitates. However, by using a precipitation technology to treat plating wastewater containing Cr(VI), Cu(II), Ni(II) and Zn(II), approximately 78% of Cr(VI) (initial 60 mg/L) was co-removed with the precipitation of Cu(II), Ni(II) and Zn(II) (each 150 mg/L) by dosing with Na2CO3 (Sun 2003). Direct precipitation by forming Cu(II)-Cr(VI) precipitates followed by adsorption of Cr(VI) onto freshly formed Cu-precipitates was subsequently found to be the main mechanism(s) involved in Cr(VI) co-removal with Cu(II) precipitation by dosing Na2CO3 stepwise to various pH values (Sun et al. 2003). This study was. carried out to further characterize the formation of primary precipitates during the early stages of copper precipitation and simultaneous removal of Cr(VI) with Cu(II). METHODS: Test metal-solutions were prepared with industrial grade chemicals: CuCl2 x 2H2O, Na2SO4 and K2Cr2207. NaCO3 was added drop-wise to synthetic metal-solution to progressively increase pH. For each pH increment, removal of soluble metals was detected by atomic absorption spectrophotometer (AAS) and surface morphology of precipitates was analyzed by scanning electron microscope (SEM). To further characterize the formation of primary precipitates, a series of MINEQL+ thermodynamic calculations/analyses and equilibrium calculations/ analyses were conducted. RESULTS AND DISCUSSION: MINEQL+ thermodynamic calculation indicated that, for a system containing 150 mg/L Cu(II) and 60 mg/L Cr(VI) with gradual Na2CO3 dosing, if any precipitates can be formed at pH 5.0 or lower, it should be in the form of CuCrO4. Comparison tests using systems containing the same equivalent of Cu(II) plus Cr(VI) and Cu(II) plus SO4(2-) showed that the precipitation occurred at a pH of around 5.0 in the Cu(II)-Cr(VI) system and around 6.0 in the Cu(II)-SO4(2-) system. The discrepancy of the precipitation was indeed caused by the formation of Cu-Cr precipitates. The initiation of copper removal at pH around 5.0 for the Cu-Cr co-removal test was not attributable to the formation of Cu-CO3 precipitates, instead, it was most likely through the formation of insoluble Cu-Cr precipitates, such as CuCrO4 and CuCrO4 x 2Cu(OH)2. Experimental tests, equilibrium calculations, MINEQL+ thermodynamic calculations and surface morphologies for systems using higher concentrations of Cu(II) and Cr(VI) further verified the most probable composition of primary precipitates is copper-chromate. CONCLUSION: In the Cu-Cr co-removal test with Na2O3 dosing to increase pH and induce metal precipitation, copper-chromate precipitates are the primary precipitates produced and contribute to the initial simultaneous removal of copper and chromium.  相似文献   

8.
This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.  相似文献   

9.
火力发电厂飞灰对抗生素磺胺的吸附性能   总被引:1,自引:0,他引:1  
研究了吸附时间、飞灰用量、初始溶液pH和振荡频率等因素对飞灰吸附去除水溶液中磺胺的影响,并对其吸附机理进行了初步探讨。研究结果表明,飞灰用量增大有利于提高其对磺胺的吸附去除率。在25℃、振荡频率150 r/min、飞灰用量50 g/L、磺胺浓度4 mg/L条件下吸附10 min,磺胺的吸附去除率可达到92.8%。电厂飞灰对磺胺的吸附符合二级动力学模型,属于单分子层吸附。  相似文献   

10.
改性粉煤灰吸附稀土废水中的氨氮   总被引:2,自引:0,他引:2  
用硫酸和氢氧化钠对粉煤灰进行酸改性和碱改性处理,研究改性前后粉煤灰对稀土废水中氨氮的吸附效果变化及最佳吸附条件,并从吸附等温线入手探讨吸附机理。结果显示,经碱改性后粉煤灰对氨氮的吸附性能有明显改善,当最佳吸附条件确定为投加量2 g,吸附时间2 h,初始pH 7~8时,碱改性粉煤灰对氨氮的吸附过程符合Freundlich等温方程式和Langmuir等温方程式。碱改性粉煤灰对氨氮的吸附属于良性吸附,且为吸热过程,室温下理论饱和吸附量为1.9066mg/g。  相似文献   

11.
Individual particles from coal- and oil-fired power plants were analyzed by scanning electron microscope equipped with an energy dispersive X-ray spectrometer to investigate size, morphology, and composition. Samples were collected on filters by dichotomous sampler in the fine ( <2.5 μm aerodynamic diameter) and coarse (2.5 to 5–10 μm) fractions. In both fractions coal fly ash particles were predominantly ( > 95%) smooth, mineral spheres. No cenospheres (perforated hollow spheres) were detected, and almost 90% of the mass concentrations occurred in the coarse fraction. Sulfur as lared as a surface layer on the mineral core; the abundances of Fe and S were highly variable. The Al/Si ratio was fairly constant for most of the spheres but not for the relatively few Fe-rich or non-spherical coal fly ash particles. Over 90% of the mass of oil fly ash occurred in the fine fraction. The size distribution of chemical and morphological properties of individual oil fly ash particles was found to be trimodal. Oil fly ash particles smaller than 0.7 μ (geometric diameter) were non-spherical and relatively pure in sulfate, and 90% of such particles were smaller than 0.5 μm; V or Ni could be detected in 50% to 60% of such particles larger than 0.3 μm. Those particles in the 0.7–3 μm range of geometric diameters were predominantly spherical and of mineral composition, highly variable in Al, Si, P, Ca, Ti and Fe; 50–60% of them contained detectable amounts of V or Ni. Larger oil fly ash particles had a lacy morphology and consisted of carbonaceous material and sulfur.  相似文献   

12.
杨文澜 《环境工程学报》2009,3(12):2281-2284
采用浸渍法将壳聚糖负载在经NaOH改性的粉煤灰上,制备了联合改性的粉煤灰。随粉煤灰上壳聚糖负载量的增加,粉煤灰对Pb2+和Cd2+的吸附率均提高。当负载壳聚糖的质量分数为8%,吸附温度为30℃,吸附时间为120 min时,粉煤灰对Pb2+的吸附率最高(为98.9%),对Cd2+的吸附率也最高(为91.5%)。其吸附行为符合Freundlich等温吸附模型,但表现为2个线性区。粉煤灰负载壳聚糖的改性机理是粉煤灰与带正电荷的壳聚糖的化学键合作用。  相似文献   

13.
This work studied the speciation of copper species adsorbed onto the surface of fly ash using X-ray absorption spectroscopy (XAS). Experimental results verified that the chemical bond between Cu(II) and the surface of the fly ash was Cu-O. The data set was optimally fitted into the two atomic shells: the first shell containing O atoms and the second shell containing Cu atoms. The extended X-ray absorption fine structure (EXAFS) data also show that, in the first shell, about 2.03-2.41 nearest oxygen atoms surround the center Cu atom with a Cu-O bond distance of 1.96-1.99 A. The results further demonstrated that the bond distance slightly increased with an increasing carbon content of the fly ash.  相似文献   

14.
粉煤灰砖块对磷酸盐的吸附特性   总被引:2,自引:0,他引:2  
刘超  杨永哲  宛娜 《环境工程学报》2014,8(5):1711-1717
以建筑废料粉煤灰砖块为吸附剂材料,通过静态吸附实验研究其对磷酸盐的吸附特征,以及磷酸盐初始浓度、吸附剂投加量、pH等因素对吸附反应的影响。Langmuir、Freundlich和Temkin等温模型的分析发现,Langmuir等温式方程最适合描述吸附过程,对磷酸盐的理论饱和吸附容量为44.62 mg/g。利用伪一级动力学模型、伪二级动力学模型和颗粒内扩散模型考察了吸附过程特征,其中伪二级动力学模型为最适于描述粉煤灰砖块对磷酸盐的吸附过程的动力学模型。通过颗粒内扩散模型、Bangham方程及Boyd模型对吸附动力学机理进行的探讨表明,颗粒内扩散速率不是粉煤灰砖块吸附磷酸盐反应的惟一速率控制步,膜扩散速率和颗粒内扩散速率共同影响着吸附反应速率。磷酸盐浓度较低时主要是膜扩散限制吸附反应速率,而磷酸盐浓度较高时则颗粒内扩散成为速率控制步。研究证明,粉煤灰砖块粉末作为湿地基质具有对磷酸盐很强的吸附能力,在减少了固体废弃物的数量的同时又可以实现水污染控制的目的。  相似文献   

15.
铁屑粉煤灰组合处理含磷废水   总被引:1,自引:0,他引:1  
实验研究了铁屑粉煤灰组合处理含磷废水的除磷效果.通过单因素实验,考查了铁屑粉煤灰质量比、反应时间、pH值和投加量对除磷效果的影响.实验结果表明,该法除磷的最优条件为铁屑和粉煤灰的质量比为2∶1,反应时间为20 min,pH值为6,投加量为20 g/L.在最优实验条件下磷的去除率达到了97.5%.对比了该法和粉煤灰吸附法与传统铁屑法的除磷效果.与单一粉煤灰吸附法和传统铁屑法除磷的结果相比较,铁屑粉煤灰组合除磷的方法具有明显优势.  相似文献   

16.
包伟  冯晖  徐炎华 《环境工程学报》2012,6(11):3937-3941
以粉煤灰联合微波-Fenton氧化工艺处理活性艳蓝KN-R生产废水,考察了粉煤灰投加量及吸附时间对处理效果的影响,并通过正交实验对微波-Fenton工艺参数进行了优化。实验结果表明,粉煤灰絮凝吸附与微波-Fenton氧化具有协同效应;在粉煤灰投加量为40 g/L,搅拌吸附时间为20 min,滤液pH值为4,Fe2+和H2O2投加量分别为3.6 mmol/L和0.15 mol/L,微波功率为200 W,辐射反应时间为4 min的优化条件下,染料废水的处理效果最好,COD和色度的去除率分别达到90.90%和99.98%。  相似文献   

17.
工业废渣基除磷材料的静态吸附研究   总被引:6,自引:2,他引:4  
研究了高效除磷材料(EPRC)对磷素的吸附特性,考察了投加量、初始浓度、初始pH值、粒径等对EPRC吸附性能的影响,分析了不同条件下EPRC的吸附过程。结果表明,最佳投加量为3.5 g/250 mL时,去除率达91.07%,出水TP浓度为0.45 mg/L。随着粒径减小,EPRC对磷素的吸附量增大,吸附平衡时间缩短。溶液初始pH值在碱性条件下,吸附容量变大。  相似文献   

18.
BACKGROUND, AIMS AND SCOPE: It is well known that the fly ash from filters of municipal waste incinerators (MWI-FA) shows dehalogenation properties after heating it to 240-450 degrees C. However, this property is not general, and fly ash samples do not possess dehalogenation ability at all in many cases. Fly ash has a very variable composition, and the state of the fly ash matter therefore plays the decisive role. In the present paper, the function of important components responsible for the dehalogenation activity of MWI-FA is analysed and compared with the model fly ash. METHODS: With the aim of accounting for the dehalogenation activity of MWI-FA, the following studies of hexachlorobenzene (HCB) dechlorination were performed: The role of copper in dehalogenation experiments was evaluated for five types of metallic copper. The gasification of carbon in MWI-FA was studied in the 250-350 degrees C temperature range. Five different kinds of carbon were used, combined with conventional Cu(o) and activated nanosize copper powder. The dechlorination experiments were also carried out with Cu(II) compounds such as CuO, Cu(OH)2, CuCl2 and CuSO4. The results were discussed from the standpoint of thermodynamics of potential reactions. Based on these results, the model of fly ash was proposed, containing silica gel, metallic copper and carbon. The dechlorination ability of MWI-FA and the model fly ash are compared under oxygen-deficient atmosphere. CONCLUSIONS: The results show that, under given experimental conditions, copper acts in the dechlorination as a stoichiometric agent rather than as a catalyst. The increased surface activity of copper enhances its dechlorination activity. It was found further that the presence of copper leads to a decrease in the temperature of carbon gasification. The cyclic valence change from Cu(o) to Cu+ or Cu2+ is a prerequisite for the dehalogenation to take place. RECOMMENDATION AND OUTLOOK: Thermodynamic analysis of the dechlorination effect, as well as the comparison of dechlorination pathways on MWI-FA and model fly ash, can provide a deeper understanding of the studied reaction.  相似文献   

19.
为了开发除磷填料,以红壤为基本材料,并以烧结温度、粉煤灰添加量、外加剂A用量和外加剂B用量作为4个因素设计正交实验,制造了不同配方的红壤烧结填料,进行等温吸附实验并利用Langmuir模型拟合最大吸磷量进行比较。结果表明,通过烧结可使粉末状红壤成型,同时提高了其除磷能力;对填料理论吸磷量的影响因素主次顺序为外加剂B用量、外加剂A用量、粉煤灰用量及烧结温度;通过比较理论吸附量,同时考虑到成本,可以确定正交实验结果中较优填料配方组成为(重量比):61%红壤,30%粉煤灰,0%外加剂A,9%外加剂B,烧结温度1150℃,其最大理论的磷吸附量2.274mg/cm^2,单位除磷原料成本约0.047元/g.  相似文献   

20.
改性粉煤灰对活性艳兰染料吸附性能的研究   总被引:11,自引:0,他引:11  
采用添加熟石灰并升温活化的方法对粉煤灰进行改性,研究了粉煤灰改性的适宜条件及其对活性艳兰染料的吸附脱色规律。试验结果表明,活性艳兰染料溶液浓度60mg/L,改性粉煤灰用量40g/L,pH范围5~10,搅拌吸附时间30min,脱色率可达98%以上。改性粉煤灰对活性艳兰染料的脱色吸附符合Freundlich方程。随着吸附温度的升高,改性粉煤灰的吸附能力下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号