首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Goal, Scope and Background Transport of P from agricultural land contributes to the eutrophication of surface waters. Soil amendment is considered one of the best management practices (BMPs) to reduce P loss from sandy soils. Laboratory column leaching experiments were conducted to evaluate the effectiveness of different soil amendments in reducing P leaching from a typical sandy soil in Florida. Methods The tested amendments were CaCl2, CaCO3, Al(OH)3, cellulose, and mill mud, and applied at the rate of 15 g/kg for a single amendment and each 7.5 g/kg if two amendments were combined. Leaching was conducted every four days for 32 days, 250 mL of deionized water being leached for each column per leaching event. Leachates were collected from each leaching event and analyzed for reactive P, PO4-P, and macro and micro-elements. Results and Discussion Except for the soils amended with CaCl2, or CaCl2+CaCO3, reactive P and PO4-P leaching losses mainly occurred in the first three leaching events. Phosphorus leaching from the soils amended with CaCl2 or CaCl2+CaCO3 was less but more persistent than that of other amendments. Reactive Pleaching loss was reduced by 36.0% and 40.4% for the amendments of CaCl2, and CaCl2+CaCO3, respectively, as compared with chemical fertilizer alone, and the corresponding values for PO4-P were 70.8% and 71.9%. The concentrations of K, Mg, Cu, and Fe in leachate were also decreased by CaCl2 or CaCl2+CaCO3 amendment. Among the seven amendments, CaCl2, CaCO3, or their combination were most effective in reducing P leaching from the sandy soil, followed by cellulose and Al(OH)3, the effects of mill mud and mill mud + Al(OH)3 were marginal. Conclusions These results indicate that the use of CaCl2, CaCO3, or their combination can significantly reduce P leaching from sandy soil, and should be considered in the development of BMPs for the sandy soil regions. Recommendations and Outlook Most agricultural soils in south Florida are very sandy with minimal holding capacities for moisture and nutrients. Repeated application of fertilizer is necessary to sustain desired yield of crops on these soils. However, eutrophication of fresh water systems in this area has been increasingly concerned by the public. Losses of P from agricultural fields by means of leaching and surface runoff are suspected as one of the important non-point contamination sources. The benefits and effectiveness of soil amendment in reducing P losses from cropping production systems while sustaining desired crop yield need to be demonstrated. Calcium chloride, CaCO3, or their combination significantly reduce Pleaching from sandy soil, and should be considered in the development of BMPs for the sandy soil regions.  相似文献   

2.
The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching.  相似文献   

3.
Meers E  Ruttens A  Hopgood MJ  Samson D  Tack FM 《Chemosphere》2005,58(8):1011-1022
Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals or radionuclides, but is generally conceived as too slow working. Enhancing the accumulation of trace pollutants in harvestable plant tissues is a prerequisite for the technology to be practically applicable. The chelating aminopolycarboxylic acid, ethylene diamine tetraacetate (EDTA), has been found to enhance shoot accumulation of heavy metals. However, the use of EDTA in phytoextraction may not be suitable due to its high environmental persistence, which may lead to groundwater contamination. This paper aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposes. A laboratory experiment was conducted to examine mobilisation of Cd, Cu, Cr, Ni, Pb and Zn into the soil solution upon application of EDTA or EDDS. The longevity of the induced mobilisation was monitored for a period of 40 days after application. Estimated effect half lives ranged between 3.8 and 7.5 days for EDDS, depending on the applied dose. The minimum observed effect half life of EDTA was 36 days, while for the highest applied dose no decrease was observed throughout the 40 day period of the mobilisation experiment. Performance of EDTA and EDDS for phytoextraction was evaluated by application to Helianthus annuus. Two other potential chelators, known for their biodegradability in comparison to EDTA, were tested in the plant experiment: nitrilo acetic acid (NTA) and citric acid. Uptake of heavy metals was higher in EDDS-treated pots than in EDTA-treated pots. The effects were still considered insufficiently high to consider efficient remediation. This may be partly due to the choice of timing for application of the soil amendment. Fixing the time of application at an earlier point before harvest may yield better results. NTA and citric acid induced no significant effects on heavy metal uptake.  相似文献   

4.
重金属污染土壤的草酸和EDTA混合淋洗研究   总被引:13,自引:0,他引:13  
黄川  李柳  黄珊  宋雪 《环境工程学报》2014,8(8):3480-3486
采用不同浓度的草酸(oxalic acid,OX)和乙二胺四乙酸(EDTA)混合的淋洗方法研究重金属污染土壤的最佳混合淋洗方式,探讨了液固比、淋洗时间及pH对淋洗效果的影响,并分析了0.2 mol/L OX+0.2 mol/L EDTA处理前后土壤中重金属形态的变化。结果表明,采用0.2 mol/L OX+0.2 mol/L EDTA混合的淋洗法可同时去除多种重金属,且对Cu、Zn、Ni和Cr的去除率明显高于单用OX和EDTA,去除率分别为Cu 41.29%、Zn 84.73%、Ni 54.2%和Cr 66.01%。0.2mol/L OX+0.2 mol/L EDTA在液固比为5∶1、淋洗时间为4 h、pH为6时可分别达到最佳淋洗效果,且分别为Cu 62.59%、Zn 93.48%、Ni 55.95%和Cr 71.57%;Cu 50.47%、Zn 86.67%、Ni 61.53%和Cr 72.68%;Cu 44.40%、Zn 81.82%、Ni68.76%和Cr 74.93%。形态分析结果表明,0.2 mol/L OX+0.2 mol/L EDTA能较好地改变土壤中重金属形态的分布。  相似文献   

5.
定量评估重金属有效态含量是明确农田土壤修复过程中重金属生态环境风险的重要步骤。针对硫化物矿区重金属污染土壤开展添加蚕沙-铁粉及蚕沙-伊蒙土-铁粉调理剂条件下油葵、孔雀草、香茅草和桑树4种经济作物的盆栽试验,并测定经济作物与调理剂共同作用下土壤中pH、有机质及镉砷铅锌铜有效态的含量。结果显示作物栽培与调理剂共同作用下,土壤pH值在两季中均有增加,土壤有机质在第一季中增加。第一季种植4种经济作物添加蚕沙-铁粉可显著降低土壤中多种重金属有效态含量,各重金属的最高钝化效率分别为Cd 30.3%、As 49.5%、Pb33.6%、Zn 52.1%、Cu 45.7%,优于蚕沙-伊蒙土-铁粉的调理效果。第二季种植时调理剂的钝化效率普遍降低。两季综合来看,蚕沙-铁粉联合香茅草时有效态镉、砷、铅、锌、铜的降低幅度最大。因此,添加蚕沙-铁粉调理剂的四种作物单季种植时能同时降低镉、砷、铅、锌、铜有效态的含量,香茅草两季种植时能同时降低以上5种重金属有效态含量,具有潜在应用价值。  相似文献   

6.
Udovic M  Lestan D 《Chemosphere》2012,88(6):718-724
The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal.  相似文献   

7.
Soil amendments previously shown to be effective in reducing metal bioavailability and/or mobility in calcareous metal-polluted soils were tested on a calcareous dredged sediment-derived soil with 26 mg Cd/kg dry soil, 2200 mg Cr/kg dry soil, 220 mg Pb/kg dry soil, and 3000 mg Zn/kg dry soil. The amendments were 5% modified aluminosilicate (AS), 10% w/w lignin, 1% w/w diammonium phosphate (DAP, (NH4)2HPO4), 1% w/w MnO, and 5% w/w CaSO4. In an additional treatment, the contaminated soil was submerged. Endpoints were metal uptake in Salix cinerea and Lumbricus terrestris, and effect on oxidation-reduction potential (ORP) in submerged soils. Results illustrated that the selected soil amendments were not effective in reducing ecological risk to vegetation or soil inhabiting invertebrates, as metal uptake in willows and earthworms did not significantly decrease following their application. Flooding the polluted soil resulted in metal uptake in S. cinerea comparable with concentrations for an uncontaminated soil.  相似文献   

8.
In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg−1). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching.  相似文献   

9.
Su DC  Wong JW  Jagadeesan H 《Chemosphere》2004,56(10):957-965
Rhizospheric distribution of nutrients and heavy metals in sludge amended soil was investigated using the rhizobag technique to give an indication of the release of metals from wastewater sludge. DTPA-extractable Zn, Cd, Ni and Mn, and available P, K and NH4+-N in the rhizosphere were markedly depleted when soil was amended with sludge. There was no conspicuous depletion or accumulation of DTPA-extractable Cu in the rhizosphere when the soil was amended with sewage sludge but DTPA-extractable Fe accumulated in the rhizosphere when the soil was amended with increasing amounts of sludge. The pH value in the rhizosphere increased with distance from the roots when soil was amended with larger amounts of sludge. The exchangeable fraction of Cu in the rhizosphere was depleted whether or not the soil was treated with sludge. Carbonate, oxide, organic and residual fractions of Cu and Zn were depleted in the rhizosphere at a distance of 0-2 mm from the roots when soil was amended with 50% sludge. Application of sewage sludge had a positive effect on alfalfa growth. With an increase in sludge amounts, the concentrations of Fe, Cu and Zn in alfalfa shoots did not change. Soil amendments with less than 25% sludge did not increase the availability or mobility of heavy metals. The depletion in rhizospheric DTPA-extractable Zn, Cd and Ni indicates that with the sole exception of Cu, release of metals from sludge amended soil was very limited.  相似文献   

10.
用自制的污泥活性炭处理亚甲基蓝与酸性品红组成的染料废水,研究了pH、吸附时间、温度等因素对复合组分染料废水脱色率的影响,测试分析了污泥活性炭在处理亚甲基蓝与酸性品红复合组分染料废水过程中的重金属浸出毒性。结果表明:与处理单一组分染料废水相比较,处理复合染料废水时pH的影响较为复杂,2种染料在污泥活性炭上存在竞争吸附,但是污泥活性炭对复合组分染料的脱色效果较好。污泥活性炭对复合染料的吸附过程符合Langmuir型吸附。在处理染料废水的过程中,污泥活性炭中的重金属镉、锌及铬会浸出,重金属镉、锌的浸出浓度符合国家标准,但铬的浸出浓度已接近国家标准上限。  相似文献   

11.
乙二胺二琥珀酸和柠檬酸对黑土中外源重金属的活化效应   总被引:1,自引:0,他引:1  
通过解吸实验和小麦盆栽实验,研究了生物可降解有机配体乙二胺二琥珀酸(EDDS)、柠檬酸(CIT)对黑土中外源Cu、Cd、Zn和Pb的活化效应.不同浓度EDDS﹑CIT对黑土中外源重金属解吸实验表明,EDDS对黑土中外源Cu、Cd、Zn和Pb的解吸远高于CIT.重金属/EDDS摩尔比为1∶1时,4种重金属的解吸率在50.8%~69.2%.小麦盆栽实验表明,EDDS为5 mmol/kg时,对小麦幼苗茎叶和根系中重金属含量影响较大,明显导致小麦幼苗茎叶和根系中Cd、Cu、Pb和Zn的富集量增加.EDDS处理组Cd、Cu、Pb和Zn的茎叶富集系数远高于对照组和CIT处理组.随时间的增加,EDDS处理组和CIT处理组重金属的根系富集量均增加,但对照组和CIT处理组大部分重金属14 d茎叶富集量略低于7 d茎叶富集量.因此,EDDS对黑土中外源重金属有较强的解吸和活化能力,可以较大程度地强化小麦幼苗根系对黑土中外源Cd、Cu、Pb和Zn的吸收并诱导这些重金属由根系向茎叶迁移.  相似文献   

12.
为探究土壤热修复后的土壤重金属形态以及健康风险的变化,以退役电镀企业地块的污染土壤为研究目标,分别在200、400和600℃下处理土壤15 min,以分析热处理对土壤重金属Cu、Pb、Ni和Cd赋存形态的影响、生物可给性变化以及重金属人体健康风险的差异.结果 表明,经热处理后,土壤Cu、Pb和Ni的酸可提取态增加,增加...  相似文献   

13.
化学固定是重金属污染土壤修复及改良技术之一。通过盆栽实验,研究了水稻秸秆炭及其与石灰、磷酸盐组合改良剂对石漠化土壤-玉米体系中As、Zn和Pb 3种重金属迁移的影响,分析了玉米及土壤重金属含量、形态变化。结果表明,几种改良剂均显著促进了玉米生长,地上部分生物量:水稻秸秆炭 > 石灰+水稻秸秆炭 > 石灰 > 秸秆 > 磷酸盐+水稻秸秆炭 > 磷酸盐 > 对照。水稻秸秆炭、石灰及其组合均能够提高土壤pH值,抑制重金属向玉米地上部分迁移。添加改良剂后土壤中As的弱酸提取态和可还原态含量显著降低,均小于3 mg·kg-1。水稻秸秆炭、秸秆与石灰及其组合均能够降低土壤中重金属提取态和还原态量,能够降低玉米籽粒中重金属的含量,但玉米籽实中Pb依然超标。  相似文献   

14.
Soil amendments based on crop nutrient requirements are considered a beneficial management practice. A greenhouse experiment with maize seeds (Zea mays L.) was conducted to assess the inputs of metals to agricultural land from soil amendments. Maize seeds were exposed to a municipal solid waste (MSW) compost (50 Mg ha−1) and NPK fertilizer (33 g plant−1) amendments considering N plant requirement until the harvesting stage with the following objectives: (1) determine the accumulation of total and available metals in soil and (2) know the uptake and ability of translocation of metals from roots to different plant parts, and their effect on biomass production. The results showed that MSW compost increased Cu, Pb and Zn in soil, while NPK fertilizer increased Cd and Ni, but decreased Hg concentration in soil. The root system acted as a barrier for Cr, Ni, Pb and Hg, so metal uptake and translocation were lower in aerial plant parts. Biomass production was significantly enhanced in both MSW and NPK fertilizer-amended soils (17%), but also provoked slight increases of metals and their bioavailability in soil. The highest metal concentrations were observed in roots, but there were no significant differences between plants growing in amended soil and the control soil. Important differences were found for aerial plant parts as regards metal accumulation, whereas metal levels in grains were negligible in all the treatments.  相似文献   

15.
Laboratory and greenhouse experiments were conducted to evaluate the effects of farmyard manure (FYM), CaCO(3) and single superphosphate (SSP) on retention and availability of Zn, Cu and Ni in sewage-irrigated soil. We also assessed the suitability of 0.05M EDTA for predicting the effectiveness of these amendments in reducing the phytoavailability of metals. Results indicated that EDTA could successfully predict the phytoavailability of Zn and Ni in amended soil, whereas it failed in case of Cu. By and large, application of CaCO(3), either alone or in combination with FYM had a positive effect on the retention of Zn, Cu and Ni in soil. Application of CaCO(3) alone or in combination with FYM was equally effective in reducing the Zn content in lettuce, whereas sole application of CaCO(3) significantly reduced Ni content. However, only SSP was found to be effective in reducing the Cu content in lettuce.  相似文献   

16.
以典型Cu和Zn污染农田土壤为研究对象,利用土壤培养实验、光谱学方法以及流动搅拌实验,以阐明土壤干湿交替对重金属污染土壤中土壤溶解性有机质(DOM)特性及重金属释放动力学行为的影响。结果表明,土壤pH、DOM含量及其芳香性随着土壤含水率升高而增大,而干湿交替主要影响土壤中DOM的含量,对pH和SUVA254值的影响很小。重金属释放动力学研究表明,土壤含水率越高越有利于Cu和Zn的稳定,干旱过程则会促进其释放,但仅在初次湿润到干旱过程中对其释放特性产生影响,后期干湿交替循环影响很小,且不同干湿交替频率和强度具有类似影响。在同等条件下,Zn的释放比Cu更快,受干湿交替影响更小。本研究结果可为重金属污染土壤修复工作提供参考。  相似文献   

17.
淋洗是一种快速高效的土壤重金属修复技术,淋洗条件的选择对不同土地利用类型的重金属污染修复具有重要意义。以Ni、Cu、Cd复合污染土壤为研究对象,在不同淋洗条件(液固比和pH)下考察6种淋洗剂(去离子水、模拟酸雨、柠檬酸、草酸、乙二胺四乙酸二钠(Na2EDTA)和氨三乙酸(NTA))对Ni、Cu、Cd的淋洗效果、形态分布及生物可利用性影响。结果表明:(1)当液固比5∶1mL/g时,柠檬酸、Na2EDTA、NTA表现出良好的淋洗效果,对建设用地土壤Ni、Cu、Cd的去除率分别达到84.53%、92.30%、56.00%以上。(2)淋洗后土壤中可交换态、可还原态Ni、Cu、Cd浓度均明显降低。(3)总体上,淋洗使残余指数升高、迁移系数降低,重金属离子在液固比20∶1 mL/g时生物可利用性最低。(4)根据实际污染土壤效果,pH 5.2的柠檬酸或pH 7.5的Na2EDTA在液固比20∶1mL/g时可降低农业土壤的风险;建设用地土壤使用液固比5∶1mL/g、pH 7.5的Na2EDTA或pH 7.5的NTA对3种重金属的去除率达80.43%以上。  相似文献   

18.
A five-stage sequential leaching procedure was used to fractionate heavy metals (Cd, Cu, Pb, Cr, Zn, Fe, Mn, Ni, Co, As, V, Ba and Ti) in green liquor dregs into the following fractions: (1) water-soluble fraction (H2O), (2) exchangeable fraction (CH3COOH), (3) easily reduced fraction (HONH3Cl), (4) oxidizable fraction (H2O2 + CH3COONH4), and (5) residual fraction (HF + HNO3 + HCl). The green liquor dregs were derived from a causticizing process at a pulp mill at Kemi, Northern Finland. According to the leaching studies, the leachability of heavy metals in the water-soluble fraction varied between 0.5 and 2 mg kg(-1) expressed on a dry weight (d.w.) basis, indicating relatively low bioavailability of the metals. However, the concentration of Mn (2065 mg kg(-1); d.w.) showed a strong and of Zn (17.6 mg kg(-1); d.w.), Ni (39.7 mg kg(-1); d.w.) and Ba (32.0 mg kg(-1); d.w.) slightly tendency to be extracted in the exchangeable fraction. In addition, Zn, Mn, Ni, Co, V and Ba showed clear leachability in the easily reduced fraction, as well as Cd, Cu, Cr, Zn, Mn, As and Ba in the oxidizable fraction. For Cd, Cu, Cr, Zn, Mn, Ni, Co, Ba and Ti, the sum of leachable heavy metal concentrations in fractions 1-5 agreed relatively well with the "total" heavy metal concentrations. Recoveries of the sum of fractions 1-5 were 84-56% of those obtained by the US EPA method 3052 (i.e. concentrations obtained after microwave oven digestion with a mixture of HF and HNO3).  相似文献   

19.
所有的家用干电池中都或多或少含有不同种类的重金属。这些重金属进入环境并达到一定含量后 ,其毒性对人体健康和生物圈会造成潜在危害。而电池进入填埋场后是否会发生壳体破损并造成重金属污染 ?本文针对废干电池进入填埋场后 ,重金属的释放和污染情况进行了试验研究。结果表明 ,电池壳体可有效阻止电池中重金属的释放 ,即便是在破损后对渗滤液中重金属的贡献也是微乎其微的。  相似文献   

20.
The effect of ethylenediaminetetraacetic acid (EDTA) in extracting heavy metal contaminants, namely Pb, Cd, Zn, and Mn, from soils with organometallic complexes, was explored using the coupled electric-hydraulic gradient assisted by ion exchange medium (CEHIXM) decontamination process. The experiments were conducted with a constant electric voltage of 50 DC V and a constant hydraulic flow rate of 4 cm3/min. The results obtained from the experiments demonstrated that EDTA was effective in extracting Pb, Cd, Zn, and Mn from soils in which acidic pH did not produce significant dissolution. Metal removal as high as 99% was achieved with 0.05 M EDTA solution within 200 hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号