共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hueiwang Anna Jeng 《Environmental monitoring and assessment》2010,169(1-4):597-606
Exposure to ambient particulate matter (PM) has been associated with a number of adverse health effects. Increasing studies have suggested that such adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. The study aimed to assess physical characteristics and chemical compositions of PM and to correlate the results to their redox activity. PM2.5 (mass aerodynamic diameter ≤2.5 μm) and ultrafine particles (UFPs, mass media aerodynamic diameter <0.1 μm) were collected in an urban area, which had heavy traffic and represented ambient air pollution associated with vehicle exhaust. Background samples were collected in a rural area, with low traffic flow. Organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), and metals were analyzed. The dithiothreitol activity assay was used to measure the redox activity of PM. Results showed that UFPs have higher concentrations of OC, EC, and PAHs than those of PM2.5. Several metals, including Fe, Cu, Zn, Ti, Pb, and Mn, were detected. Among them, Cu had the highest concentrations, followed by Fe and Zn. Organic carbon constituted 22.8% to 59.7% of the content on the surface of PM2.5 and UFPs. Our results showed higher redox activity on a per PM mass basis for UFPs as compared to PM2.5. Linear multivariable regression analyses showed that redox activity highly correlated with PAH concentrations and organic compounds, and insignificantly correlated with EC and metals, except soluble Fe, which increased redox activity in particle suspension due to the presence of ROS. 相似文献
3.
A monitoring method for diesel particulate matter was published as Method 5040 by the National Institute for Occupational Safety and Health (NIOSH). Organic and elemental carbon are determined by the method, but elemental carbon (EC) is a better exposure measure. The US Mine Safety and Health Administration (MSHA) proposed use of NIOSH 5040 for compliance determinations in metal and nonmetal mines. MSHA also published a rulemaking for coal mines, but no exposure standard was provided. A standard based on particulate carbon is not considered practical because of coal dust interference. Interference may not be a problem if an appropriate size-selective sampler and EC exposure standard are employed. Submicrometer dust concentrations found in previous surveys of nondieselized, underground coal mines were relatively low. If a large fraction of the submicrometer dust is organic and mineral matter, submicrometer EC concentrations would be much lower than submicrometer mass concentrations. Laboratory and field results reported herein indicate the amount of EC contributed by submicrometer coal dust is minor. In a laboratory test, a submicrometer EC concentration of 31 microg m(-3) was found when sampling a respirable coal dust concentration over three times the US compliance limit (2 mg m(-3)). Laboratory results are consistent with surveys of nondieselized coal mines, where EC results ranged from below the method limit of detection to 18 microg m(-3) when size-selective samplers were used to collect dust fractions having particle diameters below 1.5 microm-submicrometer EC concentrations were approximate 7 microg m(-3). In dieselized mines, submicrometer EC concentrations are much higher. 相似文献
4.
Sheesley RJ Schauer JJ Smith TJ Garshick E Laden F Marr LC Molina LT 《Journal of environmental monitoring : JEM》2008,10(3):305-314
A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 microg m(-3) among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m(-3)). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 +/- 17.1% for truck repair shops, 65.4 +/- 20.4% for the docks and 38.4 +/- 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations. 相似文献
5.
In a previous study, the efficacy of commercial and prototype impactors for sampling diesel particulate matter (DPM) in coal mines was investigated. Laboratory and field samples were collected on quartz-fiber filters and analyzed for organic and elemental carbon. Coal dust contributed a minimal amount of elemental carbon when commercial cascade impactors and prototype impactors, designed by the University of Minnesota (UMN) and the US Bureau of Mines (BOM), were used to collect submicrometer dust fractions. Other impactors were not as effective at excluding coal dust. The impactors evaluated in that study were either not commercially available or were multi-stage, expensive, and difficult to use for personal measurements. A commercial version of the BOM impactor, called the DPM Cassette, was recently introduced by SKC. Tests were conducted to evaluate the performance of the DPM Cassette for measuring diesel-source elemental carbon in the presence of coal dust. Bituminous coals from three mines in two different coal provinces were examined. The dust particle diameters were small and the coal dust contained a high percentage of carbon, thereby giving a worst-case condition for non-anthracite coal mines. Results for the DPM Cassette were essentially identical to those obtained by the BOM impactors in a previous study. At a respirable coal dust concentration of 5.46 mg m(-3), which is 3.8 times the regulatory limit, the DPM Cassette collected only 34 microg m(-3) of coal-source elemental carbon. 相似文献
6.
Shi T Schins RP Knaapen AM Kuhlbusch T Pitz M Heinrich J Borm PJ 《Journal of environmental monitoring : JEM》2003,5(4):550-556
Epidemiological studies have demonstrated the relationship between exposure to ambient particulate matter (PM) and health effects in those with cardiopulmonary diseases. The free radical generating activity of particles has been suggested as a unifying factor in the biological activity of PM in toxicological studies but so far has not been applied as a method for environmental monitoring of PM. The purpose of this study was to characterize hydroxyl radical (OH*) production by different size fractions of PM, to use as an alternative method for monitoring of PM composition and activity. We have developed a method, using electron paramagnetic resonance (EPR), to measure OH* radical formation in suspensions of particles in the presence of hydrogen peroxide and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a specific spin-trap. Samples of ambient particulate matter (PM) of different size fractions were collected from various sites on various filters. PM deposited on filters as well as suspensions in water retain its ability to generate OH* and this generation is determined by concentration of hydrogen peroxide and soluble metals. However, large variations in OH* radical formation and kinetics were found with different soluble metals and within metals (Fe, V) with different valencies. The method was applied to environmental monitoring in Hettstedt-Zerbst, situated in South-Eastern Germany, where it showed a relation to Cu-content of PM. The method was also applied in Duisburg, where the PMI fraction showed the highest DMPO-OH* generation but was not linked to particle counts. The method integrates metal bioavailability and reactivity and can provide a better understanding of the effect of small variations in mass concentrations on health. 相似文献
7.
Ambient air monitoring for suspended particulate matter was carried over a period of one year in some coal mining areas of the Raniganj coalfield. Concentrations of seven elements in suspended particulate matter were determined. The set of data obtained was analysed to determine the sources of trace elements by factor analysis. The data could be interpreted on the basis of five factors. These factors are attributed to various sources of particulate matter by noting the dependence of factors on the elements. 相似文献
8.
Rynö M Rantanen L Papaioannou E Konstandopoulos AG Koskentalo T Savela K 《Journal of environmental monitoring : JEM》2006,8(4):488-493
In order to characterize and compare the chemical composition of diesel particulate matter and ambient air samples collected on filters, different extraction procedures were tested and their extraction efficiencies and recoveries determined. This study is an evaluation of extraction methods using the standard 16 EPA PAHs with HPLC fluorescence analysis. Including LC analysis also GC and MS methods for the determination of PAHs can be used. Soxhlet extraction was compared with ultrasonic agitation and pressurized fluid extraction (PFE) using three solvents to extract PAHs from diesel exhaust and urban air particulates. The selected PAH compounds of soluble organic fractions were analyzed by HPLC with a multiple wavelength shift fluorescence detector. The EPA standard mixture of 16 PAH compounds was used as a standard to identify and quantify diesel exhaust-derived PAHs. The most effective extraction method of those tested was pressurized fluid extraction using dichloromethane as a solvent. 相似文献
9.
R. Harkov A. Greenberg F. Darack L. Mcgeorge C. Pietarinen 《Environmental monitoring and assessment》1987,9(1):83-92
Quality assurance (QA) assessments of air pollution data sets provide a basis for evaluating the significance of various substances in the atmosphere. For non-criteria pollutants, QA results are seldom reported in the technical literature and are often difficult to estimate. The present report provides a summary of QA results such as recovery, precision and accuracy data. Of the six trace elements and nine organic constituents compared in detail, recoveries, laboratory precision and laboratory accuracy values were 100%, ±3% to ±19% and-2 to-13% for the former group and 69% to 98%, ±7% to 23% and-15 to-34% for the later group. System precision varied from ±22% to ±47% for the trace elements and ±42% to ±83% for the organic constituents. Limitations in the interpretation of non-criteria particulate-phase pollutant data bases are discussed with some emphasis placed on receptor-modelling and risk assessment applications. Finally, the relevance of NBS certified materials for QA estimates in non-criteria air pollutant studies is also reviewed. 相似文献
10.
Subbalakshmi Y Patti AF Lee GS Hooper MA 《Journal of environmental monitoring : JEM》2000,2(6):561-565
Organic air particulate matter was analysed by applying the techniques of Py-GC-MS (pyrolysis-gas chromatography-mass spectrometry) and solid state 13C-NMR (nuclear magnetic resonance). Particles dislodged from air particulate filters and humic acid extracted from these filters were studied for structural components. The structural components of the air particles and extracted humic acid consisted of compounds originating from biomacromolecules, namely, lignin, carbohydrates, protein and lipids. The main components identified for each class included: (1) methoxyphenols originating from lignin; (2) furans, aldehydes and ketones from carbohydrates; (3) pyrrole, indoles from protein; and (4) many hydrocarbons from lipid structures. Single ion monitoring (SIM) and tetramethyl ammonium hydroxide (TMAH) methylation were utilised for detection of aliphatic hydrocarbons and acidic components, respectively. Hydrocarbons ranging from C9 to C28 were detected by SIM analysis, while aliphatic acids ranged from C9 to C18. The majority of components analysed directly in the air particles were similar to those from the humic acid extracts. Many of the structural components of air particles were typical of humic substances of soil and aqueous systems and these were attributed to both biogenic and anthropogenic sources. 相似文献
11.
Study of phytopigments in river bed sediments: effects of the organic matter, nutrients and metal composition 总被引:1,自引:0,他引:1
Devesa-Rey R Moldes AB Díaz-Fierros F Barral MT 《Environmental monitoring and assessment》2009,153(1-4):147-159
Phytopigment estimation has a considerable interest in the evaluation of freshwater bodies' quality, because it takes into account the synergistic effect of nutrients like phosphorus or nitrogen on algal growth producing eutrophication. Furthermore, their increasing concentration constitutes the first step in the formation of biofilms on the surface sediments, adding a new and very important element to the dynamic nature of the surface sediments. In this study the distribution of phytoplankton--in terms of chlorophyll-a, chlorophyll-b, phaeophytin-a, phaeophytin-b, total carotenoids, total chlorophyll, and total phaeophytin--was evaluated in river bed sediments. Samples collected at sites with low levels of nutrients (P,N) and metal concentrations showed lower phytopigment concentrations than those collected at the sampling sites affected by sources of pollution. Phytoplankton concentrations were directly and highly related to the organic matter concentrations--in particular to the humic fraction--as well as to the total nitrogen (N), total phosphorus (P(T)) and available phosphorus (P(A)) concentrations in sediments. In addition, phytoplankton also correlates positively with Cu, Zn, Fe and Al extracted in oxalate, being Cu the variable that most influences the phytopigment growth. These are essential metals for the metabolism of the phytoplankton, so therefore the increase in metal concentrations can increase algal growth, unless they reach toxic levels. 相似文献
12.
In this study, the size distribution of airborne particles and related heavy metals Co, Cd, Sn, Cu, Ni, Cr, Pb and V in two urban areas in Istanbul: Yenibosna and Goztepe, were examined. The different inhalable particles were collected by using a cascade impactor in eight size fractions (<0.4 μm, 0.4-0.7 μm, 1.1-2.1 μm, 2.1-3.3 μm, 3.3-4.7 μm, 4.7-5.8 μm, 5.8-9 μm and >9 μm) for six months at each station. Samples were collected on glass fiber filters and filters were extracted and analyzed using ICP-MS. Log-normal distributions showed that the particles collected at the Yenibosna site have a smaller size compared to the Goztepe samples and the size distribution of PM was represented the best by the tri-modal. The average total particle concentrations and standard deviations were obtained as 67.7 ± 17.0 μg m(-3) and 82.1 ± 21.2 μg m(-3), at the Yenibosna and G?ztepe sites, respectively. The higher metal rate in fine and medium coarse PM showed that the anthropogenic sources were the most significant pollutant source. Principal component analysis identified five components for PM namely traffic, road dust, coal and fuel oil combustion, and industrial. 相似文献
13.
The tapered element oscillating microbalance (TEOM) system is widely used to measure continuous particle mass concentrations in air quality networks. However, the semi-volatile aerosol material is lost under normal operation conditions (50 °C). This study has evaluated the error in the organic fraction of the TEOM-measured secondary organic aerosols formed from the degradation of biogenic pollutants. Experiments were carried out under controlled, water-free conditions in a fully equipped, high volume atmospheric simulator--the European PhotoReactor (EUPHORE). The ozonolysis of α-pinene, β-pinene and limonene provided a reproducible source of organic aerosol. Particulate matter concentration profiles were registered for different TEOM operating temperatures. When these values were compared with values from a filter-based gravimetric method and a scanning mobility particle sizer (SMPS), they showed that the differences between monitoring systems increased with increasing TEOM temperature. According to our results, when the TEOM is operated at 50 °C, it fails to measure 32-46% of the organic particulate material, depending on the aerosol precursor. This study has also identified and quantified the multi-oxygenated organic compounds lost in the TEOM monitoring by using a method based on the gas chromatography-mass spectrometry technique. Important losses have been calculated for relevant ambient aerosol compounds such as pinonic acid, pinonaldehyde, norpinone and limonalic acid. In conclusion, the present study has demonstrated that a high operating temperature of the TEOM monitor reduces the humidity interference but underestimates the semi-volatile organic fraction. 相似文献
14.
15.
B. Vijay Bhaskar R. V. Jeba Rajasekhar P. Muthusubramanian Amit P. Kesarkar 《Environmental monitoring and assessment》2010,164(1-4):323-336
Airborne particulate matter (PM10) was collected for a period of 1 year at six locations in Madurai city, India. The chemical analyses on PM10 samples were carried out for the estimation of heavy metals and ions using atomic absorption spectroscopy and ion chromatography respectively. The average PM10 concentrations varied from 97.2 to 152.5 μg/m3, which were found to be below the Indian air quality standards. While industrial areas had the highest concentrations of heavy metals such as Fe, Zn and Cr and also the $\text{SO}_{4}^{2-}$ ions, traffic areas with relatively higher traffic densities in the city endured highest concentrations of Cd and the $\text{NO}_{3}^{-}$ ion. As gaseous pollutants serve as precursors of ionic particles in the atmospheric environment, gaseous pollution control is necessitated along with particulate with special reference to heavy metal and ion pollution abatement for the sustainable development of Madurai city. 相似文献
16.
Chung W Chen Q Osammor O Nolan A Zhang X Sharifi VN Swithenbank J 《Environmental monitoring and assessment》2012,184(3):1471-1486
Airborne particulate matter (PM) has become one of the dominant pollutants with the increasing material and energy demand
due to global economic growth. The main objective of this research is to provide a comprehensive receptor level characterisation
of the particulate matter collected in a city environment. Particulate matter samples were collected on Tapered Element Oscillating
Microbalance (TEOM) filters from five monitoring sites over a period of 1 year. An Andersen eight-stage cascade impactor was
also used to collect airborne PM samples from three other locations to compare with the samples collected by TEOM. All the
samples were then subjected to individual particle morphology and chemical composition analysis by SEM/EDS. Bulk chemical
composition of the samples were also analysed through ICP–OES. Based on these analyses, possible sources of the PM samples
were identified. The results showed that the monitoring sites in residential environments were dominated by transportation-derived
particles and other migratory particulates. Monitoring sites near the city centre were dominant by particles from transportation,
with biological particles abundant for the site closer to a river. The monitoring station located close to the industrial
area, despite only 200 m away from a motorway, has low contribution of non-exhaust particulates from vehicles. Instead, the
particulates collected from this site were dominated by industrial sources. An air dispersion modelling package was also used
to model the particulate matter dispersion in the city area for the period of sampling. The results from the model showed
that the points of high emissions were around industrial areas. 相似文献
17.
M. Margarita Préndez Jorge L. Ortiz Santiago R. Zolezzi 《Environmental monitoring and assessment》1993,24(2):99-115
Santiago is a city of over 4.5 million inhabitants and about 415000 motor vehicles using leaded gasoline. Twenty-four-hour samples were taken of total and fractionated particulate matter using a low-volume system and two Andersen cascade impactors, between 1978 and 1989 at different sites of the city of Santiago. Lead concentrations were determined by atomic absorption spectrophotometry. The results show that Pb concentrations vary greatly depending on the site selected. Higher values are always detected near the city center. An annual variation with the highest value during the autumn-winter period (May–July) is clearly observed. Lead concentrations versus size are clearly biased to particles smaller than 2 µm. A correlation is observed between Pb concentrations and the suspended particulate matter under 3 µm at different sites of the city. The curves of Pb concentration versus size of the aerosols emitted by the gas exhaust of motor vehicles using leaded gasoline are similar to those of the atmospheric aerosols. 相似文献
18.
Papanastasiou DK Fidaros D Bartzanas T Kittas C 《Environmental monitoring and assessment》2011,183(1-4):285-296
Atmospheric pollutants from livestock operations influence air quality inside livestock buildings and the air exhausted from them. The climate that prevails inside the building affects human and animal health and welfare, as well as productivity, while emissions from the building contribute to environmental pollution. The aim of this study was to examine the variation of two climatic parameters (namely temperature and relative humidity) and the levels of particulate matter of different sizes (PM10-PM2.5-PM1), as well as the relationships between them, inside a typical Greek naturally ventilated livestock building that hosts mainly sheep. The concentration of particles was recorded during a 45-day period (27/11-10/1), while temperature and relative humidity were observed during an almost 1-year period. The analysis revealed that the variation of outdoor weather conditions significantly influenced the indoor environment, as temperature and relative humidity inside the building varied in accordance to the outside climate conditions. Temperature remained higher indoors than outdoors during the winter and extremely low values were not recorded inside the building. However, the tolerable relative humidity levels recommended by the International Commission of Agricultural Engineering (CIGR) were fulfilled only in 47% of the hours during the almost 1-year period that was examined. This fact indicates that although temperature was satisfactorily controlled, the control of relative humidity was deficient. The concentration of particulate matter was increased during the cold winter days due to poor ventilation. The maximum daily average value of PM10, PM2.5 and PM1 concentration equaled to 363, 61 and 30?μg/m(3) respectively. The concentration of the coarse particles was strongly influenced by the farming activities that were daily taking place in the building, the dust resuspension being considered as the dominant source. A significant part of the fine particles were secondary, which the production of could be attributed to an increase in relative humidity levels. It is concluded that measures have to be adopted in order to achieve sufficient ventilation and to reduce particulate matter levels. 相似文献
19.
A suite of twelve assays has been used to 'fingerprint' dissolved organic matter (DOM). The assays were applied directly to filtered natural water samples. Temperature, pH and conductivity accounted for the environmental conditions on-site. Bulk carbon characteristics were assayed by measuring UV absorbance at 200 and 240 nm, colour in grade Hazen, DOC (dissolved organic carbon), fluorescence (excitation 370 nm, emission 450 nm) and the complexation of phenol itself. Measuring hydroxybenzenes ('monophenolics'), polyhydroxybenzenes ('polyphenolics') and total phenolics with the Gibbs, Prussian Blue and Folin-Ciocalteau assays, respectively, determined the phenolics pool. The methodology was tested on six freshwater sites in North Wales chosen to provide differences in vegetation, land-use and water chemistry and sampled once during each season. A novel approach for the presentation of the data has been developed that combines all range normalised assay results for each site and each season within one polar plot, hence the term 'fingerprint'. The data was also analysed using principal component factor analysis. Assays characterised as determining the chemical properties of DOM contributed to Factor 1 and explained 59% of the variation in the data. Assays apparently determined by the water matrix, contributed to Factor 2 and explained 20% of the variation within the data. The factor scores obtained for each site showed more variation for assays relating to the chemical properties of DOM than to the surrounding water matrix. The methodology was found to detect chemical changes within DOM for each site throughout the year and different responses for different sites. 相似文献
20.
Kenny L Beaumont G Gudmundsson A Thorpe A Koch W 《Journal of environmental monitoring : JEM》2005,7(5):481-487
An experimental system was developed for the rapid measurement of the aspiration/transfer efficiency of aerosol samplers in a wind tunnel. We attempted to measure the aspiration and particle transfer characteristics of two inlets commonly used for sampling airborne Particulate Matter (PM): the 'Total Suspended Particulate' or TSP inlet, and the louvered 'dichotomous sampler inlet' typically used in sampling PM10 or PM2.5. We were able to determine the fraction of the external aerosol that enters the inlet and is transferred through it, and hence is available for collection by a filter, or further size fractionation into PM10 or PM2.5. This 'sampling efficiency' was analysed as a function of dimensionless aerodynamic parameters in order to understand the factors governing inlet performance. We found that for the louvered inlet the sampling efficiency increases as the external wind increases. Under all conditions expected in practical use the louvered inlet aspirates sufficient PM to allow either PM10 or PM2.5 to be selected downstream. The TSP inlet's sampling efficiency decreases with increasing external wind, and the TSP inlet is likely to under-sample the coarse end of the PM10 fraction at moderate and high external winds. As this inlet is generally not used with a downstream size fractionator, changes in sampling efficiency directly affect the measured aerosol concentration. We also investigated whether it is possible to dimensionally scale the PM inlets to operate at either higher or lower flow rates, while preserving the same sampling characteristics as the current full-scale, 16.67 L min(-1) versions. In the case of the louvered inlet, our results indicate that scaling to lower flow rates is possible; scaling to higher flow rates was not tested. For the TSP sampler, the sampling efficiency changes if the sampler is scaled to operate at smaller or larger flow rates, leading to unreliable performance. 相似文献