共查询到17条相似文献,搜索用时 62 毫秒
1.
太湖水底摩擦系数的估算 总被引:1,自引:0,他引:1
利用1992年8月至1992年10月在太湖马山地区测得的风,浪资料,采用浅水浪公式对太湖水底摩擦系数进行了估算,估算值为0.0025。 相似文献
2.
太湖水域PH3的时空变化特征 总被引:8,自引:1,他引:8
以太湖为研究对象 ,考察了富营养化浅水湖泊中磷化氢的时空分布特征 .结果表明 ,湖面大气中PH3 由于受风向、天气等因素的综合作用 ,时空分布规律不太明显 .表层湖水和底层湖水由于受到风浪扰动 ,天气变化和船只等的影响 ,不同采样点PH3 的含量变化不大 .同时 ,PH3 浓度沿湖水垂直梯度方向的变化亦较小 .而过滤湖水与原始湖水中PH3 的时空变化在同一采样点位、同一采样时间 ,原始湖水中PH3 的浓度明显高于过滤湖水中PH3 的浓度 .底泥中PH3 含量的变化可能与湖底氧化还原环境和温度有关 ,对于水体污染比较严重的地方底泥PH3 含量较高 . 相似文献
3.
抚仙湖夏季热分层时期水温及水质分布特征 总被引:3,自引:5,他引:3
为探究高原深水湖泊抚仙湖夏季热分层时期水温水质空间特征及昼间变化规律,于2014年7月在抚仙湖南部、中部及北部各选取一个代表点位,开展了各点分层采样及北部点位昼间连续分层采样调查观测.结果表明:(1)抚仙湖夏季水温分布具有明显的深水湖泊成层期温度分布特征,表面至水深15 m为变温层,水温变幅25.51~22.81℃,15~40 m为温跃层,水温变幅22.81~14.72℃,40 m以下为等温层,水温变幅14.72~13.70℃.湖体表层与湖底层的最大温差为11.8℃,与温带湖泊同期相比温差较小,而湖底等温层水温为14℃左右,较温带湖泊为高,体现了抚仙湖高原深水湖泊自身的水温成层特征.(2)水温成层决定了湖体的化学成层与生态成层特征:pH、溶解氧(DO)及电导率均呈现出与水温分布相同的分层结构,值得关注的是湖底层DO浓度低至2~3 mg·L~(-1),作为贫营养湖泊,抚仙湖底层开始出现溶解氧偏低的现象昭示着其可能面临潜在的生态风险;总磷(TP)及总氮(TN)由于温跃层的阻隔,等温层呈现一定程度的营养盐累积效应;叶绿素a与高锰酸盐指数也均与水温分层存在对应的响应关系,在湖体上层出现最大值.(3)抚仙湖热分层时期,水温分层存在昼间变化,中午光照辐射增强导致温跃层下潜,强度变大,厚度变窄,显著影响变温层和温跃层的pH、DO、电导率及叶绿素a等动态分布,TP、TN及高锰酸盐指数的昼间变化规律不显著. 相似文献
4.
基于MODIS数据的太湖蓝藻变化与水温关系研究 总被引:2,自引:1,他引:2
以太湖为研究区,基于2008年4~12月的60景EOS—MODIS 1B遥感影像数据。利用NDVI算法结合目视判读解译了水华分布变化的基本信息,通过劈窗算法反演太湖湖面水温,发现在2008年太湖蓝藻生长、暴发、衰退周期中。水华面积的大小与湖面均温值之间关系密切:在20℃以下时表层水温与太湖蓝藻生长暴发或沉寂消亡具有明显的相关性;20℃-30℃时水华的面积大小受到湖面温度和其他因素的共同影响,容易发生大规模蓝藻暴发:30℃以上时过高的表层水温会对蓝藻的上浮聚集具有一定抑制作用:太湖蓝藻全年消亡的临界温度与其初始生长的临界温度相比更低。研究同时发现太湖湖面温度的空间差异是影响蓝藻水华分布迁移的重要因素之一。 相似文献
5.
太湖地区太阳辐射与水温的变化特征及其对叶绿素a的影响 总被引:8,自引:1,他引:7
基于中国科学院太湖湖泊生态系统研究站1993年以来的常规监测资料,利用比较与数理统计相关分析方法对太湖地区的太阳辐射和水温变化特征及其对水体叶绿索a浓度的影响进行分析.结果显示,太湖地区太阳总辐射、光合有效辐射、光合有效辐射占总辐射的比例及水温总体上都呈上升的趋势.其中,光合有效辐射的增长速率大于总辐射的增长速率,年际水温增长率春季秋季>夏季.太阳辐射及水温的年内变化呈夏季大,春秋季次之,冬季最小的特征.此外,太阳辐射和水温与叶绿素a呈显著正相关关系(P<0.01),太阳辐射特别是光合有效辐射和水温的增加为藻类的大量生长和水华暴发提供了良好的物理条件,太湖蓝藻水华初始暴发时间有逐年前移的趋势且水华持续时间逐年增加. 相似文献
6.
7.
8.
浅水型湖泊蓝藻水华预警监测工作的思考 总被引:3,自引:0,他引:3
浅水型湖泊的富营养化进程不断加快,呈现出蓝藻水华暴发现象是逐年增加的。太湖作为长江中下游地区典型的浅水型湖泊更因近年来蓝藻水华频发的态势引起了政府和社会的广泛关注。为确保太湖地区饮水安全,提高政府应对蓝藻水华的能力,对太湖蓝藻水华进行预警监测是判断其发展趋势以及制定相应对策的重要手段。着力分析和总结了太湖蓝藻水华预警监测工作的主要内容,从预警监测工作的统筹、预警监测体系的建立、技术分析、预警监测的启动、分级与评价、预警信息的发布、预警监测的终止到预警监测的保障机制等,以利于同行们更好地应对浅水型湖泊蓝藻水华的发生。 相似文献
9.
10.
太湖水体漫衰减系数特征及其对水生态环境影响分析 总被引:5,自引:3,他引:5
利用2006年10~11月太湖全湖不同区域光学属性的测量数据,就太湖水体漫衰减系数(Kd)特征、各影响因子对Kd的贡献率以及Kd对太湖水生态系统的影响进行分析.结果表明,太湖水体的漫衰减系数Kd以571 nm为分界点,在整个可见光波长范围内(400~700 nm)主要呈现2种变化趋势.第1种,在<571 nm波长范围内,Kd随着波长的增加呈现指数形式衰减,第2种,在>571 nm波长范围内,Kd表现为波动形式;在400~700 nm波长范围内,色素颗粒物的吸收系数是漫衰减系数第一贡献者,非色素颗粒物吸收系数和散射系数处于第二贡献者地位,而黄质吸收系数的贡献率相对最小;太湖水体漫衰减系数决定了太湖水生态系统中的光生态因子,Kd形成的“水体窗口”影响了太湖水域不同类型生态系统的形成,并为太湖“水华”的优势藻类铜绿微囊藻的出现提供了水下光场依据. 相似文献
11.
12.
利用大理国家气候观象台依托于JICA项目,在洱海湖中建立的自动观测系统2009年全年的观测资料,分析了溶解氧的日变化特征。结果表明:洱海湖中溶解氧表现为日出后最小、日落后最大的日变化特征。全年变化范围为2.31~7.98 mg/L,最大值出现在12月20:00时,而最小值出现在9月10:00时;较小时段出现在6-10月,各月月平均12月最大,9月最小,年较差为4.83 mg/L;四季中冬季偏大,夏季偏小,冬春季比夏秋季明显偏大。四季中各个典型日的日较差相对于各季的平均偏大,峰值、谷值出现时间大都偏晚。连阴雨出现后,由于受低温阴雨寡照的影响,洱海溶解氧偏高。 相似文献
13.
太湖流域水污染对太湖水质的影响分析 总被引:21,自引:0,他引:21
从太湖地区(苏州、无锡、常州、杭州、嘉兴和湖州)的污染物排放量、水质监测结果,以及工农业发展、人口变化、人民生活水平的提高、东太湖萎缩,底泥中营养物的变化和湖泊生态系统失衡的特点入手,分析了太湖流域水污染现状。结果表明,工业废水排放量高于城镇生活废水排放量;太湖湖体、环湖河流水质与省、市边界断面主要超标项目分别为:总磷、总氮和氨氮;水体水质演变是由工农业迅速发展、人口过度增加、污染防治措施相对滞后,以及太湖水生态系统失衡等原因造成的。 相似文献
14.
基于2003-01~2005-06利用静态箱法对太湖水-气界面CO2交换通量的观测,对太湖水-气界面交换通量的变化特征进行了分析研究.结果表明:太湖水-气界面CO2交换通量存在明显的日变化,春、夏、秋、冬4季日平均通量分别为-0.79mg/(m2·h)、-4.89 mg/(m2·h)、-4.06 mg/(m2·h)和-2.56 mg/(m2·h),太湖均是CO2的汇.一般污染越重的区域,CO2通量值越大.藻型湖区水-气界面CO2交换通量季节变化不明显,草型湖区水-气界面CO2交换通量季节变化很明显,夏秋季高,冬春季低.CO2通量变化的可能相关因子还有天气情况、太阳辐射、风速及水温、pH、TA、Chla、TC、TN和TP等. 相似文献
15.
太湖水-气界面CO2交换通量观测研究 总被引:1,自引:2,他引:1
基于2003-01~2005-06利用静态箱法对太湖水-气界面CO2交换通量的观测,对太湖水-气界面交换通量的变化特征进行了分析研究.结果表明:太湖水-气界面CO2交换通量存在明显的日变化,春、夏、秋、冬4季日平均通量分别为-0.79 mg/(m2·h)、-4.89 mg/(m2·h)、-4.06 mg/(m2·h)和-2.56 mg/(m2·h),太湖均是CO2的汇.一般污染越重的区域,CO2通量值越大.藻型湖区水-气界面CO2交换通量季节变化不明显,草型湖区水-气界面CO2交换通量季节变化很明显,夏秋季高,冬春季低.CO2通量变化的可能相关因子还有天气情况、太阳辐射、风速及水温、pH、TA、Chla、TC、TN和TP等. 相似文献
16.
17.
太湖不同湖区轮虫群落结构季节变化的比较研究 总被引:7,自引:3,他引:7
2006年7月~2007年6月对太湖不同湖区(河口区、梅梁湾、太湖湖心区和贡湖湾)轮虫的季节变化进行了比较研究.整个研究期间,河口区、梅梁湾、太湖湖心区和贡湖湾轮虫种类数分别为23、15、14和21;河口区轮虫的年平均密度最高,为475个·L-1,梅梁湾最低,为164个·L-1,太湖湖心区为189个·L1-,贡湖湾为338个·L-1.4个湖区优势种不同,河口区轮虫优势种为萼花臂尾轮虫(B.cdyciflorus),梅梁湾为角突臂尾轮虫(B.angularis),太湖湖心区和贡湖湾优势种都是针簇多肢轮虫(P.trigla).食物的不同以及大型浮游甲壳动物的抑制作用,可能是太湖4个湖区轮虫群落结构不同的重要原因.相关分析表明,轮虫数量与枝角类数量、枝角类生物量和桡足类生物量极显著负相关;轮虫数量与透明度显著正相关.结果表明,太湖4个不同湖区轮虫群落结构不同. 相似文献