首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polychlorinated dibenzodioxins/furans (PCDD/F) were formed in substantial quantities in a pilot-scale fluidized bed combustor burning salt-laden waste wood, a common fuel for Canadian coastal pulp and paper mills. Formation of PCDD/F increased with increasing chloride content in the feed, and appeared to correlate with the chlorine content in the fly ash. It took a very long time for the ash chlorine content to stabilize, suggesting that chlorine transferred slowly from the flue gas to the ash. The baghouse may contribute largely to formation of the PCDD/F, owing to its temperature range and the potentially long residence time for ash particles. Controlling the baghouse temperature to reduce the PCDD/F formation in the baghouse should be effective in reducing the total emission level. While sulphur addition was found to reduce the emission level by as much as 90%, the emission level was still above the regulated level for the mills burning salt-laden wood under the conditions of the present study. No relation between the emission level and CO concentration in the flue gas was observed.  相似文献   

2.
In this paper we derive typical emission factors for coarse particulate matter (PM(10)), oxides of nitrogen (NO(x)), black carbon (BC), and number particle size distributions based on a combination of measurements and air quality dispersion modeling. The advantage of this approach is that the emission factors represent integrated emissions from several vehicle types and different types of wood stoves. Normally it is very difficult to estimate the total emissions in cities on the basis of laboratory measurements on single vehicles or stoves because of the large variability in conditions. The measurements were made in Temuco, Chile, between April 18 and June 15, 2005 at two sites. The first one was located in a residential area relatively far from major roads. The second site was located in a busy street in downtown Temuco where wood consumption is low. The measurements support the assumption that the monitoring sites represent the impact of different emission sources, namely traffic and residential wood combustion (RWC). Fitting model results to the available measurements, emission factors were obtained for PM(10) (RWC = 2160 +/- 100 mg/kg; traffic = 610 +/- 51 mg/veh-km), NO(x) (RWC = 800 +/- 100 mg/kg; traffic = 4400 +/- 100 mg/veh-km), BC (RWC = 74 +/- 6 mg/kg; traffic = 60 +/- 3 mg/veh-km) and particle number (N) with size distribution between 25 and 600 nm (N(25-600)) (RWC = 8.9 +/- 1 x 10(14) pt/kg; traffic = 6.7 +/- 0.5 x 10(14) pt/veh-km). The obtained emission factors are comparable to results reported in the literature. The size distribution of the N emission factors for traffic was shown to be different than for RWC. The main difference is that although traffic emissions show a bimodal size distribution with a main mode below 30 nm and a secondary one around 100 nm, RWC emissions show the main mode slightly below 100 nm and a smaller nucleation mode below 50 nm.  相似文献   

3.
Boiler briquette coal versus raw coal: Part I--Stack gas emissions   总被引:1,自引:0,他引:1  
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.  相似文献   

4.
Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH3 and H2S during the aerobic composting process was 742 g ton-1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton-1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of its 17 times lower overall emission of the volatiles mentioned.  相似文献   

5.
Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NOx) ratio of 6.01 ± 0.15 (r 2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 ± 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NOx and HCHO/CO ratios are largely due to higher NOx and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NOx emission ratio is around 0.017 ± 0.0009 kg HONO/kg NOx which is twice as high as in MOVES. The observed NO2/NOx emission ratio is around 0.16 ± 0.01 kg NO2/kg NOx, which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 ± 0.0002 kg CO/kg CO2. This as well as CO/NOx overestimation is coming from light-duty gasoline vehicles.
Implications: Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals that ultimately contribute to ozone formation. There still exist uncertainties in emission sources of HONO and HCHO and thus regional air quality modeling still tend to underestimate concentrations of free radicals in the atmosphere. This paper demonstrates that the latest U.S. Environmental Protection Agency (EPA) traffic emission model MOVES still shows significant deviations from observed emission ratios, in particular underestimation of HCHO/CO and HONO/NOx ratios. Improving the performance of MOVES may improve regional air quality modeling.  相似文献   

6.
GOAL, SCOPE AND BACKGROUND: Malodorous volatiles derived from the decomposition of biowaste within the process of composting might pose a risk to human health. Different techniques of process engineering have been developed to minimise the burden of malodorous compounds in air possibly affecting compost workers and residents in the vicinity. METHODS: In the present study, three different composting facilities were examined for the emission of volatiles to estimate the impact of process engineering on the dispersal of odorous compounds and to discuss its relevance for human health. RESULTS AND DISCUSSION: Concentrations of single compounds belonging to alcohols, ketones, furanes, sulfur-containing compounds and especially terpenes ranged from 10(2) up to nearly 10(6) ng/m3 depending on the sampling sites and the process engineering. The ratio of MVOC and total VOC measured changed throughout the process of biodegradation. A certain combination of volatile compounds coincided with the occurrence of typical compost odour. CONCLUSION: The type of process engineering seemed to have a major impact on the emission of volatiles, as amounts of (microbial) volatiles emitted were characteristic for the different techniques used. Thus, the MVOC emission basically depends on the degree of biodegradation. It is likely that the concentrations workers are exposed to can have an impact on human health. RECOMMENDATIONS AND OUTLOOK: It is obvious that less sophisticated types of process engineering give rise to greater amounts of bioaerosols and volatiles and, therefore, technical devices have to be improved and controlled regularly to minimise adverse health effects on workers.  相似文献   

7.
Abstract

The In-Plume Emission Test Stand (IPETS) characterizes gaseous and particulate matter (PM) emissions from combustion sources in real time. Carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and other gases are quantified with a closed-path Fourier transform infrared spectrometer (FTIR). Particle concentrations, chemical composition, and other particle properties are characterized with an electrical low-pressure impactor (ELPI), a light-scattering particle detector, an optical particle counter, and filter samples amenable to different laboratory analysis. IPETS measurements of fuel-based emission factors for a diesel generator are compared with those from a Mobile Emissions Laboratory (MEL). IPETS emission factors ranged from 0.3 to 11.8, 0.2 to 3.7, and 22.2 to 32.8 g/kg fuel for CO, NO2, and NO, respectively. IPETS PM emission factors ranged from 0.4 to 1.4, 0.3 to 1.8, 0.3 to 2.2, and 1 to 3.4 g/kg fuel for filter, photoacoustic, nephelometer, and impactor measurements, respectively. Observed linear regression statistics for IPETS versus MEL concentrations were as follows: CO slope = 1.1, r2 = 0.99; NO slope = 1.1, r2 = 0.92; and NO2 slope = 0.8, r2 = 0.96. IPETS versus MEL PM regression statistics were: filter slope = 1.3, r2 = 0.80; ELPI slope = 1.7, r2 = 0.87; light-scattering slope = 2.7, r2 = 0.92; and photoacoustic slope = 2.1, r2 = 0.91. Lower temperatures in the dilution air (~25 °C for IPETS vs. ~50 °C for MEL) may result in greater condensation of semi-volatile compounds on existing particles, thereby explaining the 30% difference for filters. The other PM measurement devices are highly correlated with the filter, but their factory-default PM calibration factors do not represent the size and optical properties of diesel exhaust. They must be normalized to a simultaneous filter measurement.  相似文献   

8.
对低(常)温下一氧化碳(CO)催化氧化进行了综述与讨论,介绍了各种催化体系催化反应的机理,着重分析了制备方法(共沉淀法、沉积沉淀法和溶剂化金属原子浸渍法等)、制备条件(前驱物、pH值、焙烧温度和焙烧时间等)、载体种类(金属氧化物、复合氧化物和沸石等)及助剂(Ce、Sm和La等)对催化剂在CO低(常)温催化氧化反应中的活性及稳定性的影响,并指出了今后的研究方向.  相似文献   

9.
分段进水多级生物膜反应器脱氮效能影响因素研究   总被引:2,自引:1,他引:1  
采用分段进水多级生物膜反应器处理高氮低碳小城镇污水,考察负荷、溶解氧和温度对反应器脱氮效能的影响。实验结果表明:负荷、溶解氧和温度对反应器脱氮效能有显著影响。在水温为20~25℃,DO为5 mg/L,负荷为1 kgCOD/(m3.d),挂膜密度为30%,第1、3、6级分段进水,流量分配比为2∶2∶1的条件下,在反应器中可成功构建出高效同时硝化反硝化系统,出水COD、NH4+-N和TN浓度分别为33 mg/L、2.6 mg/L和29.4 mg/L,去除率分别为90.1%、96.0%和63.9%。当水温≤15℃时,硝化速率受温度的影响显著。  相似文献   

10.
The 2009 Study of Houston Atmospheric Radical Precursors (SHARP) field campaign had several components that yielded information on the primary vehicular emissions of formaldehyde (HCHO) and nitrous acid (HONO), in addition to many other species. Analysis of HONO measurements at the Moody Tower site in Houston, TX, yielded emission ratios of HONO to the vehicle exhaust tracer species NOx and CO of 14 pptv/ppbv and 2.3 pptv/ppbv, somewhat smaller than recently published results from the Galleria site, although evidence is presented that the Moody Tower values should be upper limits to the true ratios of directly emitted HONO, and are consistent with ratios used in current standard emissions models. Several other Moody Tower emission ratios are presented, in particular a value for HCHO/CO of 2.4 pptv/ppbv. Considering only estimates of random errors, this would be significantly lower than a previous value, though the small sample size and possible systematic differences should be taken into account. Emission factors for CO, NOx, and HCHO, as well as various volatile organic compounds (VOCs), were derived from mobile laboratory measurements both in the Washburn Tunnel and in on-road exhaust plume observations. These two sets of results and others reported in the literature all agree well, and are substantially larger than the CO, NOx, and HCHO emission factors derived from the emission ratios reported from the Galleria site.

Implications: Emission factors for the species measured in the various components of the 2009 SHARP campaign in Houston, TX, including HCHO, HONO, CO, CO2, nitrogen oxides, and VOCs, are needed to support regional air quality monitoring. Components of the SHARP campaign measured these species in several different ways, each with their own potential for systematic errors and differences in vehicle fleets sampled. Comparisons between data sets suggest that differences in sampling place and time may result in quite different emission factors, while also showing that different vehicle mixes can yield surprisingly similar emission factors.  相似文献   

11.
With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300-14,700 mg/m3 and 240-400 degrees C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained. Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results. In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   

12.
Soxhlet extraction and high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry detection (MS/MS) was used for the determination of selected quaternary ammonium compounds (QACs) in solid samples. The method was applied for the determination of alkyl benzyl, dialkyl and trialkyl quaternary ammonium compounds in sediment and sludge samples in Austria. The overall method quantification limits range from 0.6 to 3 microg/kg for sediments and from 2 to 5 microg/kg for sewage sludges. Mean recoveries between 67% and 95% are achieved. In general sediments were especially contaminated by C12 chain benzalkonium chloride (BAC-C12) as well as by the long C-chain dialkyldimethylammonium chloride (DDAC-C18) with a maximum concentration of 3.6 mg/kg and 2.1mg/kg, respectively. Maxima of 27 mg/kg for DDAC-C10, 25 mg/kg for BAC-C12 and 23 mg/kg for BAC-C14 were determined for sludge samples. The sums of the 12 selected target compounds range from 22 mg/kg to 103 mg/kg in the sludge samples.  相似文献   

13.
Carbon monoxide (CO) emitted from roasted coffee is a potential occupational respiratory exposure hazard to workers within the coffee industry. The current study objective was to estimate CO emission factors from commercially available roasted whole bean and ground coffee measured in loose form, not packaged, and to assess the utility of CO monitoring in nonventilated storage spaces such as within coffee roasting and packaging facilities, transport vessels, and cafés. Determinants affecting CO emissions from coffee were investigated, including form (whole bean vs. ground), roast level (light, medium, medium-dark, dark), and age (time since the package was opened). CO emission factors were estimated for roasted coffee samples from a variety of manufacturers purchased from local grocery stores and online. Emission tests were performed on 36 brands of coffee, some with more than one sample per brand and with various roast levels. Decaying source equations or smoothing functions were fitted to the CO concentration measurements. Maximum observed emission factors at the peak of the predicted concentration curve were adjusted by the time required to reach the maximum CO concentration and reported as emission factors (EFbuildup). Ground coffee had a significantly increased EFbuildup (P < 0.0001) compared with whole bean. Roast level did not significantly affect emissions for whole bean (P = 0.72) but did for ground (P < 0.001) coffee. For ground coffee, medium-dark and dark roasts had significantly higher emissions than medium and light roasts. Worst-case emission factors from commercially available whole bean and ground coffee measured in loose form, not packaged, showed that roasted coffee can rapidly emit CO. CO concentrations should be monitored in storage spaces in service and manufacturing facilities as well as transport vessels to ensure exposures do not exceed occupational exposure limits. Storage spaces may need to be ventilated to control CO concentrations to safe levels.

Implications: Emission rates of carbon monoxide (CO) from roasted coffee showed that unventilated or underventilated storage spaces should be monitored and ventilated, if necessary, to control CO concentrations to safe levels.  相似文献   


14.
Hsu YC  Tsai JH  Chen HW  Lin WY 《Chemosphere》2001,42(3):227-234
Motor vehicle emission factors of carbon monoxide (CO) and non-methane volatile organic compounds (NMVOCs) were calculated inside the Chung-Cheng Tunnel of Kaohsiung in Taiwan. The results were compared with those model predictions from the Mobile Taiwan 2.0 model. Individual concentrations of 21 species of NMVOCs were also determined. Photochemical potential of NMVOCs was evaluated by using the maximum incremental reactivity (MIR). Field data showed that the integrated emission factors of CO and NMVOCs for actual fleet were 6.3 and 1.5 g/veh km, respectively. The error range of these factors may be up to 45%. The predicted values by the Mobile Taiwan 2.0 model closely matched the observed data. Concentrations of isopentane, 2-methylpentane, toluene and m,p-xylene were the dominant species of NMVOCs. The ratio of maximum incremental reactivity to NMVOCs concentration was 3.9, similar to those of the studies in the US Fort McHenry and Tuscarora Tunnel.  相似文献   

15.
污泥含炭吸附剂对挥发性有机废气吸附实验研究   总被引:1,自引:0,他引:1  
研究了污泥含炭吸附剂对挥发性有机污染物的吸附特性。结果表明,污泥含炭吸附剂对苯系物的吸附为典型的物理吸附,其吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;在吸附反应温度为20℃,气体流量为500 mL/m in(停留时间为0.424 s),甲苯浓度为2 700 mg/m3时,甲苯的饱和吸附容量为150.0 mg/g;同时,研究表明污泥含炭吸附剂对苯系物的饱和吸附容量和吸附强弱次序为二甲苯甲苯苯。结果表明污泥含炭吸附剂适合对中低浓度有机废气的吸附净化。  相似文献   

16.
Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.  相似文献   

17.
The data on dioxin and furan emissions revealed, based on individual analysis for 2,3,7,8-TCDD, TCDD, 2,3,7,8-TCDF and TCDF for the six test periods and the operation of the two RDF-fired boilers, that there is no apparent consistent relationship between the dioxin and furan emissions and the individual or combined (averaged) boiler steam flow, total flue gas flow, sidewall furnace temperature, furnace temperature at 2-second residence time, or total furnace residence time at this plant. Only RDF feeder balance begins to show a correlation. However, there was a difference between RDF-natural gas firing and RDF-only firing; the RDF-only firing had lower PCDD and PCDF emissions while consistently operating at lower excess air.

The dioxin and furan emissions from this testing are comparable to the low end of the range of these emissions measured by the U.S. EPA at resource recovery plants in the past 4 years. This may be due in part to the calculated average furnace retention of 4 to 5 seconds during Tests #4–6, with average furnace temperatures at 2-second residence time from 1650°F to 1750°F. However, there was no correlation between dioxin and furan emissions in the stack and individual boiler operation, as judged by the average concentrations of O2, CO, CO2, 1-CO/CO2), NOx, HCl, SO2, or TSP, and furnace upset conditions versus normal operation as judged by instantaneous steam flow, sidewall furnace temperature, O2, CO, NOx, or SO2.  相似文献   


18.
Open beef cattle feedlots emit various air pollutants, including particulate matter (PM) with equivalent aerodynamic diameter of 10 microm or less (PM10); however limited research has quantified PM10 emission rates from feedlots. This research was conducted to determine emission rates of PM10 from large cattle feedlots in Kansas. Concentrations of PM10 at the downwind and upwind edges of two large cattle feedlots (KS1 and KS2) in Kansas were measured with tapered element oscillating microbalance (TEOM) PM10 monitors from January 2007 to December 2008. Weather conditions at the feedlots were also monitored. From measured PM10 concentrations and weather conditions, PM10 emission rates were determined using reverse modeling with the American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD). The two feedlots differed significantly in median PM10 emission flux (1.60 g/m2-day for KS1 vs. 1.10 g/m2-day for KS2) but not in PM10 emission factor (27 kg/1000 head-day for KS1 and 30 kg/1000 head-day KS2). These emission factors were smaller than published U.S. Environmental Protection Agency (EPA) emission factor for cattle feedlots.  相似文献   

19.
The native carbon oxidation and PolyChloroDibenzo-p-Dioxins and PolyChloroDibenzoFurans, PCDD/F, formation were simultaneously studied at different temperatures (230-350 degrees C) and times (0-1440 min) in order to establish a direct correlation between the disappearance of the reagent and the formation of the products. The kinetic runs were conducted in an experimental set up where conditions were chosen to gain information on the role of fly ash deposits in cold zones of municipal solid waste incinerators in PCDD/F formation reaction. The carbon oxidation measured as the decrease of total organic carbon of fly ash was in agreement with the carbon evolved as sum of CO and CO(2). The carbon mass balance indicated an increase in the efficiency of carbon conversion in CO and CO(2) with temperature. The CO and CO(2) formation was the result of two parallel pseudo first order reactions thus giving significant information about the reaction mechanism. PCDD/F formation as a function of temperature showed that the maximum formation was achieved in a narrow range around 280 degrees C; the time effect at 280 degrees C was a progressive formation increase at least up to 900 min. The PCDF:PCDD molar ratio increased with temperature and time, and the most abundant homologues were HxCDD, HpCDD, OCDD for PCDD, and HxCDF, HpCDF within PCDF. These experimental results supported the hypothesis that the formation mechanism was the de novo synthesis.  相似文献   

20.
Tetrachloroethylene (PCE) emissions and the exposure of workers in six commercial and three industrial dry-cleaning establishments that use dry-to-dry machines were determined. The personal samples and area samples [8-hr time-weighted average (TWA) and short-term exposure] were collected with charcoal tubes and passive monitors. The temporal variation of PCE concentration in the workplace air was monitored using a Fourier transform infrared analyzer (FTIR). The PCE emission rates were determined by multiplying the average PCE concentration in the room and the total airflow rate in the room. The PCE emissions were related to the cleaning rate in units of kg/hr. The operators' mean TWA exposure in commercial shops and industrial establishments was 28 (4.1 ppm) and 32 mg/m3 (4.6 ppm), and the pressers' exposure was 3.4 (0.5 ppm) and 7.7 mg/m3 (1.1 ppm), respectively. The customer service personnel had the lowest TWA exposure with a mean value of 0.8 mg/m3 (0.1 ppm). The highest peak concentration (2300 mg/m3; 334 ppm) was observed during cleaning of the lint and button trap, during which operation respirators were used. The PCE emission rates ranged from 4 to 118 g/hr corresponding to emission factors (mass of solvent evaporated per mass of cleaned cloths) of 0.3-3.6 g/kg. The workers' exposure to PCE was below the occupational limit values in the United States [according to the American Conference of Governmental Industrial Hygienists (ACGIH)] and in Finland. The outdoor PCE emissions were clearly below the limit values given in the European Union volatile organic compound (VOC) directive requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号