首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 134 毫秒
1.
部分除草剂与重金属混合物对发光菌的毒性   总被引:4,自引:0,他引:4  
以5种不同类型除草剂和4种重金属为混合物组分,探索混合物毒性变化规律.应用微板毒性分析方法,测定了百草敌、磺草灵、西草净、除草定、环嗪酮、CdCl2·2.5H2O、Ni(NO3)2·6H2O、CoSO4·7H2O和ZnSO4·7H2O对淡水发光菌—青海弧菌Q67(Vibrio qinghaiensis sp.—Q67)的发光抑制毒性.应用非线性最小二乘拟合技术模拟实验剂量-效应数据.结果表明,5种除草剂与4种重金属化合物的剂量-效应曲线(DRC)均可用Weibull函数有效表征.为了全面考察各种不同浓度组成的混合物对Q67的毒性,设计了9个组分同时存在的3个等效应浓度比(EECR)混合物和10个均匀设计浓度比(UDCR)混合物.同样应用微板毒性分析方法测定了各个混合物对Q67的抑制毒性,并应用非线性最小二乘拟合技术模拟了其剂量-效应曲线.通过剂量加和(DA)与独立作用(IA)模型综合分析了各个混合物对发光菌的毒性变化规律.结果表明,不同类型除草剂与多种重金属的各种浓度组合的混合物毒性均可用DA模型进行预测和评估.  相似文献   

2.
部分离子液体及其混合物对发光菌的毒性作用   总被引:6,自引:0,他引:6  
离子液体(ILs)因其环境安全和良好的非挥发性而得以广泛应用,尽管其理化性质与工程数据一直在不断扩充,但其可用的毒性及生态毒性数据很少.以青海弧菌Q67为指示生物,应用微板发光毒性测试方法,测定了C6H11BF4N(2S1)、C8H15ClN2(S2)、C8H15BF4N2(S3)、C9H14BF4N(S4)、C9H17BF4N2(S5)、C9H17BrN2(S6)、C11H13BF4N2(S7)、C11H13ClN2(S8)、C12H23BrN2(S9)、C14H27BF4N(2S10)、C14H27ClN(2S11)和C16H31ClN(2S12)等12种ILs对发光菌的发光抑制毒性.结果表明,4种ILs(S9、S10、S11、S12)具有高抑制毒性(pEC50>4.5),而另外8种毒性相对较小(pEC50<3.5).为研究混合ILs的联合毒性,根据单个ILs的剂量-效应关系,构建了两组混合物,即由S9、S10、S11和S12构成的高毒性组(简称H组)以及由S2、S3、S4、S5、S6和S8构成的低毒性组(简称L组)混合物.应用非线性模拟技术与剂量加和(DA)及独立作用(IA)模型对混合物毒性数据进行拟合与预测分析,结果表明,以等效应浓度比法设计的混合物,无论是对于H组的4个混合物还是L组的4个混合物,其联合毒性大小均可用DA模型准确预测.对于均匀试验设计浓度比法设计的混合物,H组的6个混合物的毒性可用DA模型有效预测,而L组的6个混合物由于剂量-效应曲线在低浓度区翘起,其混合物毒性用DA或用IA模型预测均有一定误差.  相似文献   

3.
部分重金属化合物对淡水发光菌的毒性研究   总被引:9,自引:1,他引:9  
应用微板毒性分析方法,分别测定了CdCl2·2.5H2O、CoSO4·5H2O、Cr(NO3)3·3H2O、Cu(NO3)2·3H2O、Fe(NO3)3·3H2O、MnCl2·9H2O、Na2SeO3、ZnSO4·7H2O、Ni(NO3)2·6H2O9种重金属离子化合物及其混合物对淡水发光菌—青海弧菌Q67(Vibrio-qinghaiensissp.—Q67)的发光抑制毒性.结果表明,9种重金属离子化合物对Q67的剂量-效应关系均可用Weibull或Logit模型有效描述.由拟合剂量-效应曲线得到这9种重金属离子化合物的半数效应浓度EC50的负对数值(-logEC50)分别为4.35、3.08、2.39、3.83、3.34、2.39、3.32、3.93和2.76,说明其毒性顺序为:CdCl2·2.5H2O>ZnSO4·7H2O>Cu(NO3)2·3H2O>Fe(NO3)3·3H2O>Na2SeO3>CoSO4·5H2O>Ni(NO3)2·6H2O>Cr(NO3)3·3H2O≈MnCl2·9H2O.为了研究重金属混合物的毒性规律,设计了4组等效应浓度(EC50、EC15、EC10和EC5)比混合物,测试了其混合物毒性,并应用剂量加和(DA)、独立作用(IA)原理及经典联合毒性评价方法进行了分析.DA与IA分析表明,所研究的4种混合物的毒性具有拮抗特征,而毒性单位法(TU)和混合指数法(MTI)的评价结果均为部分相加作用,相加指数法(AI)的评价结果则为拮抗作用.所选评价方法不同,混合物毒性评价结果可能也不同.  相似文献   

4.
5种取代酚化合物对淡水发光菌的联合毒性   总被引:22,自引:7,他引:22  
以新型淡水发光菌——青海弧菌Q67(Vibrio-qinghaiensissp.—Q67)为检验生物,以VeritasTM微孔板光度计为发光强度测试设备,分别测定了3,5-二羟基甲苯、2,3-二甲基苯酚、对氯苯酚、邻氯苯酚、2,4-二氯苯酚对淡水发光菌的发光抑制毒性及其混合物的联合毒性.结果表明,5种取代酚的剂量-效应关系都可用Weibull模型有效描述,从这些模型估算的半数效应浓度负对数值(-logEC50)分别为2.69、3.08、3.43、2.81和3.66,可知其对发光菌的毒性大小顺序为:2,4-二氯苯酚>对氯苯酚>2,3-二甲基苯酚>邻氯苯酚>3,5-二羟基甲苯.分别设计浓度等于各自之EC50和EC10的2个等效应浓度比混合物以及3个不同效应浓度比混合物进行联合毒性实验,结果发现,在所实验的浓度范围内各个混合物的剂量加和(DA)模型与独立作用(IA)模型具有相似的作用规律,其联合毒性既可用DA模型也可用IA模型进行预测.  相似文献   

5.
五元氨基甲酸酯类农药混合物体系对青海弧菌的毒性特点   总被引:2,自引:0,他引:2  
以5种氨基甲酸酯类农药涕灭威(ALD)、残杀威(BAY)、呋喃丹(CAR)、灭多威(MET)和抗蚜威(PIR)为研究对象,应用均匀设计射线法设计五元混合物体系共6条射线(U1,U2,…,U6),应用基于发光菌青海弧菌Q67的微板毒性分析法(MTA)系统地考察了5种农药及其混合物的毒性,以浓度加和(CA)为参考模型分析混合物毒性相互作用(协同或拮抗作用)。结果表明,Logti和Weibull函数能较好地拟合5种氨基甲酸酯农药及其混合物对发光菌Q67的浓度-效应数据(R20.99,RMSE0.032);以EC50的负对数值pEC50为毒性指标,5种农药的毒性顺序为BAY(pEC50=2.87)CAR(pEC50=2.67)ALD(pEC50=2.00)MET(pEC50=1.99)PIR(pEC50=1.79);依据CA,五元氨基甲酸酯类农药的6条混合物射线中,有2条呈加和作用,4条呈拮抗作用,其中U2和U4在整条浓度-效应曲线上呈现了明显的拮抗作用,而U3和U6的弱拮抗作用分别发生在混合物浓度的中高浓度区和中低浓度区;五元氨基甲酸酯类农药混合物的毒性与组分灭多威(MET)的浓度比呈良好的负相关关系(r=-0.9238),且线性模型对混合物毒性具有良好的预测能力。  相似文献   

6.
重金属和有机磷农药污染物在水域环境中普遍存在。以卤虫(Artemiasalina)为受试生物,采用固定浓度比法,研究了重金属Zn、Cd与辛硫磷和敌百虫2种农药以毒性单位比为4∶1、3∶2、1∶1、2∶3和1∶4构成的二元混合体系对卤虫的联合毒性,采用等效线图解法判定毒物间的相互作用类型。同时,基于单一化合物的浓度-效应曲线,运用浓度加和(CA)和独立作用(IA)2种模型对不同配比二元混合物的联合毒性进行预测。结果表明,Zn-Cd混合物联合毒性随Zn比例的增加而增强。低Zn比例的混合物(1∶4、2∶3)表现为拮抗效应,中、高Zn比例的混合物(1∶1、3∶2和4∶1)为加和效应。5种不同配比的有机磷农药混合物均表现为加和效应。金属-农药混合物则均为拮抗作用。模型预测结果表明,CA能够较好地预测辛硫磷与敌百虫二元混合物的联合毒性,而IA则更适用于对金属-农药混合物联合毒性的预测。以上结果表明,混合体系中各组分的比例是影响联合毒性的因素之一,毒性评估时应该充分考虑其影响。CA及IA模型同样适用于评估和预测包含相同或完全独立作用机制组分的混合物对非单细胞生物体(如卤虫)的联合毒性。  相似文献   

7.
多种污染物混合特别是低浓度下的混合对生物的联合毒性是生态毒理学研究的热点之一。选择了3类污染物苯酚、间甲基苯酚、苯胺、对硝基苯胺、硝酸铅,采用美国微板光度计测定了它们对发光菌青海弧菌-Q67(Vibrio-qinghaiensis sp.-Q67)的单一及联合毒性。应用非线性拟合技术模拟了这5种物质及其混合物的剂量-效应曲线,硝酸铅可用Logit模型模拟,其它4个物质能用Weibull模型准确描述,所有拟合相关系数在0.98以上,均方根误差在0.02以下。根据纯物质的EC50值,获得这5个物质的毒性强弱顺序:硝酸铅〉对硝基苯胺间甲基苯酚苯酚苯胺。混合实验设计了各物质在EC50、EC1、无观察效应浓度(no observed effect concentration,NOEC)比例的混合。用浓度加和(dose addition,DA)和独立作用模型(independent action,IA)对混合物毒性进行预测。IA基本准确预测了这5个物质在各自EC50混合的毒性。DA与IA模型都稍微过高地预测了以EC1及NOEC浓度比例混合的联合毒性,但都在毒理学实验容许的范围之内。这5个物质以NOEC混合时对测试生物Q67没有产生明显毒性,但是还不能判定这些物质在此浓度下混合是安全的。污染物在各自的NOEC浓度下混合是否对其它生物有潜在的威胁还需更多毒理学实验支持。  相似文献   

8.
多种污染物混合特别是低浓度下的混合对生物的联合毒性是生态毒理学研究的热点之一。选择了3类污染物苯酚、间甲基苯酚、苯胺、对硝基苯胺、硝酸铅,采用美国微板光度计测定了它们对发光菌青海弧菌.Q67(Vibrio-qinghaiensissp-Q67)的单一及联合毒性。应用非线性拟合技术模拟了这5种物质及其混合物的剂量.效应曲线,硝酸铅可用Logit模型模拟,其它4个物质能用Weibull模型准确描述,所有拟合相关系数在0.98以上,均方根误差在O.02以下。根据纯物质的EC50值,获得这5个物质的毒性强弱顺序:硝酸铅〉对硝基苯胺〉间甲基苯酚〉苯酚〉苯胺。混合实验设计了各物质在EC50、EC1、无观察效应浓度(noobserved effectcon centration,NOEC)比例的混合。用浓度加和(doseaddition,DA)和独立作用模型(independentaction,IA)对混合物毒性进行预测。IA基本准确预测了这5个物质在各自EC50混合的毒性。DA与队模型都稍微过高地预测了以EC。及NOEC浓度比例混合的联合毒性,但都在毒理学实验容许的范围之内。这5个物质以NOEC混合时对测试生物Q67没有产生明显毒性,但是还不能判定这些物质在此浓度下混合是安全的。污染物在各自的NOEC浓度下混合是否对其它生物有潜在的威胁还需更多毒理学实验支持。  相似文献   

9.
吡啶类离子液体对青海弧菌Q67的混合毒性评估   总被引:1,自引:0,他引:1  
合污染物产生的累积与毒性相互作用具有潜在的环境与健康风险。以6种吡啶类离子液体(IL):丁基溴化吡啶([Bpy]Br)、己基溴化吡啶([Hpy]Br)、辛基溴化吡啶([Opy]Br)、丁基氯化吡啶([Bpy]Cl)、己基氯化吡啶([Opy]Cl)和辛基氯化吡啶([Opy]Cl)为混合物组分,应用直接均分射线法(EquRay)和均匀设计射线法(UD-Ray)分别设计4组二元IL混合物和2组三元混合物,每组混合物包括5条具有不同浓度配比的混合物射线。应用微板毒性分析法测定6种IL及其30条混合物射线对青海弧菌Q67的发光抑制毒性,以浓度加和(CA)为加和参考模型分析混合物毒性相互作用。结果表明,Logit函数能有效地拟合6种吡啶IL及其30条混合物射线的浓度-效应数据。若以半数效应浓度的负对数(pEC50)为毒性指标,6个吡啶IL对Q67的毒性与烷基链上碳原子数目正相关,且每增加2个碳原子,其毒性约增加1。IL的阴离子(Br-或Cl-)对毒性没有影响。除己基氯化吡啶([Hpy]Cl)和辛基氯化吡啶([Opy]Cl)的二元混合物呈现明显拮抗作用外,其他二元及三元混合物都为加和作用。  相似文献   

10.
铜和镍对大麦根伸长的联合毒性研究   总被引:2,自引:0,他引:2  
重金属的复合污染在环境污染中普遍存在,所以复合污染的联合毒性研究对于准确评价重金属污染有着重要的意义.本论文以大麦根伸长为研究对象,探索了铜(Cu)和镍(Ni)对大麦根伸长的联合毒性.基于Cu-Ni混合物的剂量-效应曲线,运用扩展的浓度加和(CA)与独立作用(RA)两个模型对不同浓度组合的Cu-Ni混合物的交互作用及联合毒性进行预测.结果表明,扩展的CA和RA模型均能较好地预测Cu-Ni混合物对大麦根伸长的联合毒性,低剂量的Ni能缓解Cu对大麦根伸长的毒性作用,但是低剂量的Cu对Ni的生物毒性没有显著影响.研究阐明了Cu、Ni复合作用对大麦根伸长联合毒性的效应机理.  相似文献   

11.
3种氯酚化合物对大型溞的联合毒性   总被引:4,自引:1,他引:4  
氯酚类化合物是我国水体中广泛存在的一类优先控制污染物,以大型溞(Daphnia magna)为试验生物,测定了2,4-二氯酚、2,4,6-三氯酚和五氯酚对大型溞的48 h致死的单一毒性和联合毒性.基于单一氯酚化合物的浓度-效应曲线,运用浓度加和(CA)与独立作用(IA)2个模型对2种等毒性浓度比的混合物(Mix-LC5...  相似文献   

12.
抗生素对微生物的联合与低剂量毒性研究进展   总被引:1,自引:0,他引:1  
目前抗生素已成为一类不可忽视的环境污染物,它在环境中呈"混合-持久-低剂量"的暴露特征。因此,研究抗生素毒性效应,特别是它的联合毒性以及低剂量下毒性兴奋效应,对抗生素污染物生态风险的评价极其重要。以抗生素联合毒性的研究进展为主线,重点概述了抗生素二元混合物的急性和慢性联合毒性研究,指出了抗生素混合物间存在相互作用,它们的联合毒性并非表现为简单的加和或独立效应,且抗生素急性-慢性联合表现出的毒性效应也存在差异;发现了不仅单一抗生素具有Hormesis效应,低剂量抗生素二元混合物也具有Hormesis作用。但目前低剂量抗生素二元混合物对微生物的毒性兴奋效应研究较少,其毒性兴奋效应的预测和评价还有待进一步完善,以期为环境中抗生素的联合生态研究和风险评价提供理论依据。  相似文献   

13.
群体感应抑制剂(quorum sensing inhibitor,QSIs)广泛应用之后与环境中现有抗菌药物共存的趋势不可避免。为了评价QSIs和现有抗菌药物共存所引起的生态环境效应,本文以费氏弧菌(Vibrio fischeri)作为模式生物,磺胺类抗生素磺胺氯哒嗪(SCP)、磺胺类增效剂甲氧苄嘧啶(TMP)和群体感应抑制剂4-溴-5-溴亚甲基-2(5氢)-呋喃酮(FC-30)为研究对象,测定了以上3个化合物对Vibrio fischeri的单一/混合慢性毒性效应。单一慢性毒性结果表明,3个化合物的毒性大小如下:FC-30SCPTMP,混合慢性毒性结果表明三元混合体系联合效应为拮抗。进一步分析可知,SCP+FC-30和TMP+FC-30两个混合体系的拮抗作用是三元混合体系为拮抗效应的根本原因。最后指出,因为SCP、TMP和FC-30的三元混合体系是拮抗作用,所以从环境生态风险角度分析,三者联合用药对环境的影响小于单一用药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号