首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In the literature, different values of the distribution coefficient KH for HgCl2 between water and air are present in a range that spans more than 3 orders of magnitude. In order to determine if a waste incineration scrubber solution could become saturated with regard to HgCl2, an accurate experimental determination of the distribution constant of HgCl2 at elevated temperatures is needed. In this work, the coefficient has been determined at four different temperatures between 10 and 50 °C. The Arrhenius expression obtained is 5.5 x 105 x exp[-(8060 ± 2200)/7] with a corresponding enthalpy for the process HgCl2(aq)<» HgCl2(g) of 67 ± 20 kJ/mole. KH at 293 K was found to be ~5 x 10-7 atm M-1, which is in almost perfect agreement with an earlier study. Applying the obtained KH values to waste incineration scrubber conditions shows that no major saturation effect will occur.  相似文献   

2.
Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury-containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl2) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150 degrees C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer-Emmett-Teller (BET) surface area could adsorb more HgCl2 at room temperature. The equilibrium adsorptive capacity of HgCl2 for WPAC measured in this study was 1.49 x 10(-1) mg HgCl2/g PAC at 25 degrees C with an initial HgCI2 concentration of 25 microg/m3. With the increase of adsorption temperature < or = 150 degrees C, the equilibrium adsorptive capacity of HgCl2 for WPAC was decreased to 1.34 x 10(-1) mg HgCl2/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl2 because of the reactions between sulfur and Hg2+ at 150 degrees C. It was demonstrated that the mechanisms for adsorbing HgCl2 onto WPAC were physical adsorption and chemisorption at 25 and 150 degrees C, respectively. Experimental results also indicated that the apparent overall driving force model appeared to have the good correlation with correlation coefficients (r) > 0.998 for HgCl2 adsorption at 25 and 150 degrees C. Moreover, the equilibrium adsorptive capacity of HgCl2 for virgin WPAC was similar to that for CPAC at 25 degrees C, whereas it was slightly higher for sulfurized WPAC than for CPAC at 150 degrees C.  相似文献   

3.
The measurement of diffusive properties of low-permeability rocks is of interest to the nuclear power industry, which is considering the option of deep geologic repositories for management of radioactive waste. We present a simple, non-destructive, constant source in-diffusion method for estimating one-dimensional pore diffusion coefficients (D(p)) in geologic materials based on X-ray radiography. Changes in X-ray absorption coefficient (Deltamicro) are used to quantify changes in relative concentration (C/C(0)) of an X-ray attenuating iodide tracer as the tracer solution diffuses through the rock pores. Estimated values of D(p) are then obtained by fitting an analytical solution to the measured concentration profiles over time. Measurements on samples before and after saturation with iodide can also be used to determine iodide-accessible porosity (phi(I)). To evaluate the radiography method, results were compared with traditional steady-state through-diffusion measurements on two rock types: shale and limestone. Values of D(p) of (4.8+/-2.5)x10(-11) m(2).s(-1) (mean+/-standard deviation) were measured for samples of Queenston Formation shale and (2.6+/-1.0)x10(-11) m(2).s(-1) for samples of Cobourg Formation limestone using the radiography method. The range of results for each rock type agree well with D(p) values of (4.6+/-2.0)x10(-11) m(2).s(-1) for shale and (3.5+/-1.8)x10(-11) m(2).s(-1) for limestone, calculated from through-diffusion experiments on adjacent rock samples. Low porosity (0.01 to 0.03) and heterogeneous distribution of porosity in the Cobourg Formation may be responsible for the slightly poorer agreement between radiography and through-diffusion results for limestones. Mean values of phi(I) for shales (0.060) and limestones (0.028) were close to mean porosity measurements made on bulk samples by the independent water loss technique (0.062 and 0.020 for shales and limestones, respectively). Radiography measurements offer the advantage of time-saving for diffusion experiments because the experiment does not require steady-state conditions and also allows for visualization of the small-scale heterogeneities in diffusive properties within rocks at the mm to cm scale.  相似文献   

4.
Landfill and sea-dumping appear to be on their way out as acceptable methods for the disposal of untreated industrial wastes in Taiwan. Recently, there has been interest in the application of fluidized bed technology to waste incineration for efficient energy utilization and environmental protection. A pilot fluidized bed combustion system was used to investigate the incineration performance and parametric test for the waste from an industrial park. According to the experimental results, the appropriate operating conditions, including temperatures of 800-840 degrees C, aeration rates of U(0)/Um(f)-2.0 or so, and on-bed feeding, were recommended to treat such waste. The emissions of SO(x), NO(x) and CO in flue gas meet the ROC-EPA regulation.  相似文献   

5.
A semi-industrial scale test was conducted to thermally treat mixtures of spent oil and askarels at a concentration of 50,000 ppm and 100,000 ppm of polychlorinated biphenyls (PCBs) under a reductive atmosphere. In average, the dry-basis composition of the synthesis gas (syngas) obtained from the gasification process was: hydrogen 46%, CO 34%, CO2 18%, and CH4 0.8%. PCBs, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans (PCDDs/PCDFs) in the gas stream were analyzed by high-resolution gas chromatography (GC)-mass spectrometry. The coplanar PCBs congeners 77, 105, 118, 156/ 157, and 167 were detected in the syngas at concentrations < 2 x 10(-7) mg/m3 (at 298 K, 1 atm, dry basis, 7% O2). The chlorine released in the destruction of the PCBs was transformed to hydrogen chloride and separated from the gas by an alkaline wet scrubber. The concentration of PCBs in the water leaving the scrubber was below the detection limit of 0.002 mg/L, whereas the destruction and removal efficiency was > 99.9999% for both tests conducted. The concentration of PCDDs/PCDFs in the syngas were 8.1 x 10(-6) ng-toxic equivalent (TEQ)/m3 and 7.1 x 10(-6) ng-TEQ/m3 (at 298 K, 1 atm, dry basis, 7% O2) for the tests at 50,000 ppm and 100,000 ppm PCBs, respectively. The only PCDD/F congener detected in the gas was the octachloro-dibenzo-p-dioxin, which has a toxic equivalent factor of 0.001. The results obtained for other pollutants (e.g., metals and particulate matter) meet the maximum allowed emission limits according to Mexican, U.S., and European regulations for the thermal treatment of hazardous waste (excluding CO, which is a major component of the syngas, and total hydrocarbons, which mainly represent the presence of CH4).  相似文献   

6.
The pulsed laser photolysis/pulsed laser-induced fluorescence (PLP/PLIF) technique has been applied to obtain rate coefficients for OH + dioxin (DD) (k1), OH + 2-chlorodibenzo-p-dioxin (2-CDD) (k2), OH + 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD) (k3), OH + 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) (k4), OH + 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) (k5), OH + 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) (k6), and OH + octachlorodibenzo-p-dioxin (OCDD) (k7) over an extended range of temperature. The atmospheric pressure (740 +/- 10 Torr) rate measurements are characterized by the following Arrhenius parameters (in units of cm3 molecule(-1) s(-1), error limits are 1 omega): k1(326-907 K) = (1.70+/-0.22) x 10(-12)exp(979+/-55)/T, k2(346-905 K) = (2.79+/-0.27) x 10(-12)exp(784+/-54)/T, k3(400-927 K) = 10(-12)exp(742+/-67)/T, k4(390-769 K) = (1.10+/-0.10) x 10(-12)exp(569+/-53)/T, k5(379-931 K) = (1.02+/-0.10) x 10(-12)exp(580+/-68)/T, k6(409-936 K) = (1.66+/-0.38) x 10(-12)exp(713+/-114)/T, k7(514-928 K) = (3.18+/-0.54) x 10(-12)exp(-667+/-115)/T. The overall uncertainty in the measurements, taking into account systematic errors dominated by uncertainty in the substrate reactor concentration, range from a factor of 2 for DD, 2-CDD, 2,3-DCDD, 2,7-DCDD, and 2,8-DCDD to +/- a factor of 4 for 1,2,3,4-TCDD and OCDD. Negative activation energies characteristic of an OH addition mechanism were observed for k1-k6. k7 exhibited a positive activation energy. Cl substitution was found to reduce OH reactivity, as observed in prior studies at lower temperatures. At elevated temperatures (500 K < T < 500 K), there was no experimental evidence for a change in reaction mechanism from OH addition to H abstraction. Theoretical calculations suggest that H abstraction will dominate OH reactivity for most if not all dioxins (excluding OCDD) at combustion temperatures (>1000 K). For OCDD, the dominant reaction mechanism at all temperatures is OH addition followed by Cl elimination.  相似文献   

7.
A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.  相似文献   

8.
The rate coefficient for the reaction of nitrite with hypochlorite and hypochlorous acid has been studied using spectrophotometric measurements. The reaction rate has been determined in a wide range of H(+) concentration (5< or =-log[H(+)]< or =11). The kinetics were carried out as a function of NO(2)(-), H(+) and total hypochlorite ([HOCl](total)=[HOCl]+[ClO(-)]+[ClNO(2)]) concentrations. The observed overall rate law is described by: -d[HClO](T)dt=[a[NO(2)(-)](2)+b[NO(2)(-)]][H(+)](2)c+d[H(+)]+e[NO(2)(-)][H(+)](2)[HOCl](total)At T=298 K and in Na(2)SO(4) at an ionic strength (I=1.00 M), we obtained using a nonlinear fitting procedure: a=(1.83+/-0.36)x10(7) s(-1), b=(1.14+/-0.23)x10(5) Ms(-1), c=(1.12+/-0.17)x10(-13) M, d=(1.43+/-0.29)x10(-6) M(2) and e=(1.41+/-0.28)x10(3) M where the errors represent 2sigma. According to the overall rate law, a/b=k(1)/k(3), b/e=k(3), c=K(w), d/c=K(a), d=K(a)K(w) and e=K(1)K(a). In Na(2)SO(4) at an ionic strength (I=1.00 M), the values of K(1) and K(a) are (1.1+/-0.1)x10(-4) and 1.28x10(7) M(-1), respectively. A mechanism is proposed for the NO(2)(-) oxidation which involves the reversible initial step: NO(2)(-)+HOCl left harpoon over right harpoon ClNO(2)+OH(-) (K(1)), while ClNO(2) undergoes the two parallel reactions: attack by NO(2)(-) (k(1)) and hydrolysis (k(3)). ClNO(2) and N(2)O(4) are proposed as important intermediates as they control the mechanism. The rate coefficients k(1) and k(3) have been determined at different ionic strengths in NaCl and Na(2)SO(4). The influence of the ionic strength and ionic environment has been studied in this work.  相似文献   

9.
This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl2 was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl2 were 1.75, 0.688, and 0.230 mg of HgCl2 per gram of powdered activated carbon derived from carbon black at 30, 70, and 150 degrees C for 500 microg/m3 of HgCl2, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-Teller (BET) models were used to simulate the adsorption of HgCl2. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30 degrees C, whereas the Freundlich isotherm fit the experimental results better at 70 and 150 degrees C. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl2 by PAC-derived carbon black favored adsorption at various HgCl2, concentrations and temperatures.  相似文献   

10.
Kinetics of photodegradation and ozonation of pentachlorophenol   总被引:3,自引:0,他引:3  
The oxidation of 2,3,4,5,6-pentachlorophenol (PCP) has been carried out by a photodecomposition process using a polychromatic UV irradiation, and by an ozonation process. In the photodegradation process, the pH accelerated the decomposition rate and the approximate first-order rate constants were evaluated, with values between 0.16+/-0.005 min(-1) at pH=3 and 0.26+/-0.007 min(-1) at pH=9. A more rigorous kinetic study led to the determination of the quantum yields of the reaction, with values of 200+/-7x10(-3) mol/Eins for pH=3 and 22+/-1.1x10(-3) mol/Eins for pH=9. In the ozonation process, the rate constants for the reaction between ozone and PCP were determined by means of a competition kinetics, with values in the range from 0.67x10(5) to 314x10(5) l/mols. The specific rate constants for the un-dissociated and dissociated forms of PCP were also calculated. Finally, in both processes, the intermediate reaction products were identified, the most important being tetrachlorocatechol, tetrachlorohydroquinone and tetra-p-chlorobenzoquinone. Free chloride ion released, which was favored at high pHs, was also followed in both processes.  相似文献   

11.
In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas. Furthermore, it was discovered that the location of the sodium chlorite application (before, in, or after the wet scrubber) greatly influences which pollutants are removed and the amount removed. This effect is related to the chemical conditions (pH, absence/presence of particular gases) that are present at different positions throughout the flue gas cleaning system profile. The research results indicated that there is a potential to achieve nearly zero SO2, NO(x), and Hg emissions (complete SO2, NO, and Hg removals and -90% of NO(x) absorption from initial values of 1500 ppmv of SO2, 200 ppmv of NO(x), and 206 microg/m3 of Hg(0)) from the flue gas when sodium chlorite was applied before the wet limestone scrubber. However applying the oxidizer after the wet limestone scrubber was the most effective configuration for Hg and NO(x) control for extremely low chlorite concentrations (below 0.002 M) and therefore appears to be the best configuration for Hg control or as an additional step in NO(x) recleaning (after other NO(x) control facilities). The multipollutant scrubber, into which the chlorite was injected simultaneously with the calcium carbonate slurry, appeared to be the least expensive solution (when consider only capital cost), but exhibited the lowest NO(x) absorption at -50%. The bench-scale test results presented can be used to develop performance predictions for a full- or pilot-scale multipollutant flue gas cleaning system equipped with wet flue gas desulfurization scrubber.  相似文献   

12.
The paper reports on global release and mass partitioning in the flux of residues of PCDD/Fs, evaluated with dedicated field campaigns at a municipal solid waste incineration plant during normal and transient operation. Results are compared with those obtained in other installations equipped with furnaces, energy recovery options and flue gas treatment technologies representative of most of the European incineration plants currently in operation. Levels of the pollutants of interest were determined in all the solid, liquid and gaseous residues produced by every single facility, and the results analysed in terms of the effects arising from the fed waste and the configuration of the plant. PCDD/Fs total release between 1.5 and 45 microg I-TEQ per ton of burned waste was evaluated, with lower values resulting from the adoption of catalytic conversion process for flue gas treatment. Most of the mass flux emitted is associated with solid residues deriving from activated carbon PCCD/F dry removal options, with significant contributions also from fly ash produced by particulate removal devices located immediately downstream the boiler and from scrubber blowdowns treatment sludge. During transient operating conditions the dioxin total release may increase by 50% with comparison to steady-state functioning.  相似文献   

13.
Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenanthrene vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 microm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, alpha = (1.4 +/- 0.4) x 10(-2) was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small alpha = (9.7 +/- 1.8) x 10(-5) was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.  相似文献   

14.
Bengtsson G  Picado F 《Chemosphere》2008,73(4):526-531
A combination of laboratory scale derived correlations and measurements of grain size distribution, DOC (dissolved organic carbon) concentration, and density of suspended bacteria promises to be useful in estimating Hg(II) sorption in heterogeneous streambeds and groundwater environments. This was found by shaking intact sediment and fractions thereof (<63-2000mum) with solutions of HgCl(2) (1.0-10.0ngml(-1)). The intact sediment was also shaken with the Hg(II) solutions separately in presence of DOC (6.5-90.2mugml(-1)) or brought in contact with suspensions of a strain of groundwater bacteria (2x10(4)-2x10(6)cellsml(-1)). Hg(II) sorption was rather weak and positively correlated with the grain size, and the sorption coefficient (K(d)) varied between about 300 and 600mlg(-1). By using the relative surface areas of the fractions, K(d) for the intact sediment was back calculated with 2% deviation. K(d) was negatively correlated with the concentration of DOC and positively correlated with the number of bacteria. A multiple regression showed that K(d) was significantly more influenced by the number of bacteria than by the grain size. The findings imply that common DOC concentrations in groundwater and streambeds, 5-20mugml(-1), will halve the K(d) obtained from standard sorption assays of Hg(II), and that K(d) will almost double when the cell numbers are doubled at densities that are common in aquifers. The findings suggest that simultaneous measurements of surface areas of sediment particles, DOC concentrations, and bacterial numbers are useful to predict spatial variation of Hg(II) sorption in aquifers and sandy sediments.  相似文献   

15.
Dioxin levels measured after wet scrubbing systems have been found to be higher than levels measured before the scrubber. It is believed that there is an adsorption of PCDD/Fs on plastic materials in the scrubber. The PCDD/F levels after a polishing wet scrubber were followed continuously for 18 months using long-time sampling equipment at a hazardous waste incineration facility in Sweden. Each sampling period lasted two weeks. It was found that the levels during and shortly after start-up periods were elevated. The decline was very slowly, which supports a memory effect in the scrubber. Further, a multivariate model showed that the relation between different homologues changed over time, which is in agreement with a desorption model, taking into account the vapour pressures for different congeners.  相似文献   

16.
Abstract

Over a six-week period, eleven tests were performed at the U.S. EPA Incineration Research Facility (IRF) in Jefferson, Arkansas to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a Calvert Flux-Forcer/Condensation Scrubber pilot plant as the primary air pollution control system (APCS). Test variables were kiln temperature, ranging from 538 °C to 927 °C; waste feed chlorine content, ranging from 0% to 3.4%; and scrubber pressure drop, ranging from 8.2 kPa to 16.9 kPa. Mercury was among the six hazardous constituent trace metals fed to the IRF’s pilotscale rotary kiln incineration system as part of a synthetic waste feed. This paper focuses on the test results solely with respect to mercury.

As expected, mercury behaved as a very volatile metal throughout the tests; it was not detected in any kiln ash samples. Scrubber collection efficiency for mercury ranged from 67% to >99%, averaging 87%; this was somewhat lower than expected and may be attributable to low scrubber loadings.

The ability to collect and analyze representative scrubber water samples appears to have been affected by the waste feed chlorine content; detection of mercury at higher concentrations during high waste-chlorine-content tests is thought to be largely the result of the formation of mercuric chloride, a more water-soluble species, during those tests. As a result, no firm conclusions may be drawn regarding the true impact of waste feed chlorine content on mercury partitioning to the scrubber water. As expected, no significant relationship was observed between kiln exit-gas temperature and mercury partitioning, nor was there a significant relationship with scrubber pressure drop.  相似文献   

17.
Bioconcentration factors (BCF) for pentachlorophenol (PCP) and 2,4-dichlorophenol (2,4-DCP) in Japanese medaka (Oryzias latipes) were determined at five different concentrations of the chemicals, between 0.1 and 10 microg/l (PCP), 0.3 and 30 microg/l (2,4-DCP), in the ambient water. Medaka were exposed to each chemicals in a continuous-flow system during the embryonic development period and 60 days after hatching from eggs collected in the laboratory. Both the exposure time and the aqueous concentrations are much more realistic and closer to natural aquatic environments than those used in conventional BCF studies. The BCF values of PCP were from (4.9+/-2.8)x10(3) at the aqueous concentration of 0.074+/-0.028 microg/l to (2.1+/-1.4)x10(3) at 9.70+/-0.56 microg/l. The BCF value of 2,4-DCP were from (3.4+/-3.0)x10(2) at 0.235+/-0.060 microg/l to 92+/-27 at 27.3+/-1.6 microg/l. Generally, BCF values increased as the aqueous concentrations of PCP or 2,4-DCP decreased. This finding suggests that a relatively low and realistic aqueous concentration of these compounds is necessary to more accurately determine their BCF values in natural aquatic environments. Conventional BCF experiments at higher aqueous concentrations may underestimate the BCF values.  相似文献   

18.
Huang WJ  Tsai JL  Liao MH 《Chemosphere》2008,71(10):1860-1865
In this study, three municipal solid waste incinerator (MSWI) ash wastes-bottom ash, scrubber residue, and baghouse ash-were extracted using a toxicity characteristic leaching procedure (TCLP) extractant. These so-called final TCLP extracts were applied to African green monkey kidney cells (Vero), baby hamster kidney cells (BHK-21), and pig kidney cells (PK-15), multi-well absorption reader analysis was performed to test how the cytotoxicity of the incineration ashes would affect the digestive systems of animals. Ion-coupled plasma analyses indicated that the baghouse ash extract possessed the highest pH and heavy metal concentration, its cytotoxicity was also the highest. In contrast, the bottom ash and the scrubber residue exhibited very low cytotoxicities. The cytotoxicities of mixtures of baghouse ash and scrubber residue toward the three tested cell lines increased as the relative ratio of the baghouse ash increased, especially for the Vero cells. The slight cytotoxicity of the scrubber residue arose mainly from the presence of Cr species, whereas the high cytotoxicity of the baghouse ash resulted from its high content of heavy metals and alkali ions. In addition, it appears that the dissolved total organic carbon content of these ash wastes can reduce the cytotoxicity of ash wastes that collect in animal cells.  相似文献   

19.
Results with the EPRI 2.5 MW(e) Integrated Environmental Control Pilot Plant (IECPP) indicate the interrelationship of particulate penetration, SO2 scrubber operation, waste production, and waste properties. Tests compared a fabric filter/wet scrubber and ESP/wet scrubber, the latter operated to simulate 1979 New Source Performance Standards (NSPS), 1971 NSPS, and pre-NSPS ESP units. Tests were conducted with low-sulfur coal producing a flue gas concentration of400ppm; flue gas spiking could be used to increase SO2 to 2000 ppm. Scrubber waste was dewatered in a thickener and vacuum belt filter (to 55 percent solids content), and mixed with fly ash. The pilot SO2 scrubber—when preceded by an ESP and forced to operate in zero-discharge—captured less SO2 than when preceded by a fabric filter. Also, scrubber operation with the ESP produced a greater quantity of waste with difficult handling characteristics, as compared to operation with the fabric filter. These difficulties occurred with particulate penetration above 0.10 lb/MBtu, which could reduce reagent utilization to 80percent. These results are attributable to inhibited limestone dissolution due to accumulation of an aluminum/fluoride compound. For both lowsulfur and simulated high-sulfur test conditions, allowing wastewater discharge to purge aluminum/fluoride content restored performance to design levels. Particulate control efficiency also affected solid waste physical properties. The fabric filter/wet scrubber produced the lowest solid waste permeability (10?8 cm/s). ESP operation at 1979 NSPS and pre-1971 NSPS ESPs increased solid waste permeability to 10?7 and 10?6 cm/s, respectively. These results are meaningful for SO2 scrubbers both for new plants and for retrofit to units with pre-NSPS ESPs, and could become significant with the increasing trend to restricted water discharge.  相似文献   

20.
The laser photolysis/laser induced fluorescence (LP/LIF) technique has been applied to studies of gas-phase mercury (Hg) chlorination. Mercury (I) chloride (HgCl) was been detected via LIF at 272 nm from reactions of elemental Hg with Cl atoms generated from the 193 nm photolysis of carbon tetrachloride. While the formation of HgCl was too fast to be observed on millisecond time scales, the kinetics of the consumption of HgCl have been determined at temperatures characteristic of post-combustion conditions. Rate coefficients and Arrhenius parameters for the reaction of HgCl with Cl2, HCl and Cl atoms were determined. The reaction of HgCl with Cl2 was the fastest reaction studied, while the reaction of HgCl with HCl was the only reaction to show any measurable temperature dependence. Estimates of the rate coefficient for the reaction Hg + Cl --> HgCl were determined using a modeling approach. Comparisons of these new measurements with model predictions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号