首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry cleaners are the largest users of perchloroethene (PCE) solvents in the United States. Releases from dry cleaners to soil and groundwater, however, remain largely unstudied. This article presents a database of 137 chlorinated solvent plumes at dry cleaners in Texas. The data indicate that PCE plumes are generally shorter in extent than those from industrial sites. Degradation products were observed at more than 80 percent of the sites with groundwater contamination. Calculated attenuation rates are on the order of one‐to‐three‐year half‐lives for PCE and its degradation products. The estimated cleanup timeframe for calculated attenuation rates is < 50 years. More research is needed to understand the presence of organic carbon sources at dry cleaners and its implications for natural attenuation. © 2004 Wiley Periodicals, Inc.  相似文献   

2.
A US EPA directive and related technical protocol outline the information needed to determine if monitored natural attenuation (MNA) for chlorinated solvents is a suitable remedy for a site. For some sites, conditions such as complex hydrology or perturbation of the contaminant plume caused by an existing remediation technology (e.g., pump‐and‐treat) make evaluation of MNA using only field data difficult. In these cases, a deterministic approach using reactive transport modeling can provide a technical basis to estimate how the plume will change and whether it can be expected to stabilize in the future and meet remediation goals. This type of approach was applied at the Petro‐Processors Inc. Brooklawn site near Baton Rouge, Louisiana, to evaluate and implement MNA. This site consists of a multicomponent nonaqueous‐phase source area creating a dissolved groundwater contamination plume in alluvial material near the Mississippi River. The hydraulic gradient of the groundwater varies seasonally with changes in the river stage. Due to the transient nature of the hydraulic gradient and the impact of a hydraulic containment system operated at the site for six years, direct field measurements could not be used to estimate natural attenuation processes. Reactive transport of contaminants were modeled using the RT3D code to estimate whether MNA has the potential to meet the site‐specific remediation goals and the requirements of the US EPA Office of Solid Waste and Emergency Response Directive 9200.4‐17P. Modeling results were incorporated into the long‐term monitoring plan as a basis for evaluating the effectiveness of the MNA remedy. As part of the long‐term monitoring plan, monitoring data will be compared to predictive simulation results to evaluate whether the plume is changing over time as predicted and can be expected to stabilize and meet remediation goals. This deterministic approach was used to support acceptance of MNA as a remedy. © 2007 Wiley Periodicals, Inc.  相似文献   

3.
Using detailed mass balance and simple analytical models, a spreadsheet‐based application (BioBalance) was developed to equip decision makers with a predictive tool that can provide a semiquantitative projection of source‐zone concentrations and provide insight into the long‐term behavior of the associated chlorinated solvent plume. The various models were linked in a toolkit in order to predict the composite impacts of alternative source‐zone remediation technologies and downgradient attenuation processes. Key outputs of BioBalance include estimates of maximum plume size, the time frame for plume stabilization, and an assessment of the sustainability of anaerobic natural attenuation processes. The toolkit also provides spatial and temporal projections of integrated contaminant flux and plume centerline concentrations. Results from model runs of the toolkit indicate that, for sites trying to meet traditional, “final” remedial objectives (e.g., two to three orders of magnitude reduction in concentration with restoration to potable limits), “dispersive” mechanisms (e.g., heterogeneous flow and matrix diffusion) can extend remedial time frames and limit the benefits of source remediation in reducing plume sizes. In these cases, the removal of source mass does not result in a corresponding reduction in the time frame for source remediation or plume stabilization. However, this should not discourage practitioners from implementing source‐depletion technologies, since results from the toolkit demonstrate a variety of measurable benefits of source remediation. Model runs suggest that alternative, “intermediate” performance metrics can improve and clarify source remediation objectives and better monitor and evaluate effectiveness. Suggested intermediate performance metrics include reduction in overall concentrations or mass within the plume, reduction of flux moving within a plume, and reduction in the potential for risk to a receptor or migration of a target concentration of contaminant beyond a site boundary. This article describes the development of two key modules of the toolkit as well as illustrates the value of using intermediate performance metrics to evaluate the performance of a source‐remediation technology. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Field sampling and testing were used to investigate the relationship between baseline geochemical and microbial community data and in situ reductive dechlorination rates at a site contaminated with trichloroethene (TCE) and carbon tetrachloride (CTET). Ten monitoring wells were selected to represent conditions along groundwater flow paths from the contaminant source zone to a wetlands groundwater discharge zone. Groundwater samples were analyzed for a suite of geochemical and microbial parameters; then push‐pull tests with fluorinated reactive tracers were conducted in each well to measure in situ reductive dechlorination rates. No exogenous electron donors were added in these tests, as the goal was to assess in situ reductive dechlorination rates under natural attenuation conditions. Geochemical data provided preliminary evidence that reductive dechlorination of TCE and CTET was occurring at the site, and microbial data confirmed the presence of known dechlorinating organisms in groundwater. Push‐pull tests were conducted using trichlorofluoroethene (TCFE) as a reactive tracer for TCE and, in one well, trichlorofluoromethane (TCFM) as a reactive tracer for CTET. Injected TCFE was transformed to cis‐ and trans‐dichlorofluoroethene and chlorofluoroethene, and, in one test, injected TCFE was completely dechlorinated to fluoroethene (FE). In situ TCFE transformation rates ranged from less than 0.005 to 0.004/day. In the single well tested, injected TCFM was transformed in situ to dichlorofluoromethane and chlorofluoromethane; the TCFM transformation rate was estimated as 0.001/day. The results indicate that it is possible to use push‐pull tests with reactive tracers to directly detect and quantify reductive dechlorination of chlorinated ethenes and ethanes under monitored natural attenuation conditions, which has not previously been demonstrated. Transformation rate estimates obtained with these techniques should improve the accuracy of contaminant transport modeling. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Groundwater investigations conducted since 1988 at a Tennessee Department of Environment and Conservation (TDEC) Voluntary Oversight and Assistance Program (VOAP) site located in Millington, Tennessee, have defined the lateral and vertical extent of site chemicals of concern (COCs) consisting of tetrachloroethene (PCE), trichloroethene (TCE), and associated degradation products. Results of a groundwater remedial investigation determined that aquifer conditions were favorable for anaerobic degradation of COCs through reductive dechlorination. A subsequent groundwater feasibility study determined that monitored natural attenuation (MNA) coupled with long‐term groundwater monitoring was the most effective and suitable remedial option for the site. A Record of Decision was issued by the TDEC VOAP approving MNA and long‐term groundwater monitoring as the remedial option for the site, a first for such a site in Tennessee involving chlorinated organics. A groundwater fate and transport model (the 1998 model) developed during the RI was used as the basis for the MNA remedy. Analytical data from 1998 to 2008 indicate COCs in former high‐concentration areas continue to degrade at rates consistent with or ahead of the 1998 model predictions. Evidence of reductive dechlorination is also supported by the continued presence of breakdown products—specifically, vinyl chloride and ethene (terminal endpoint of PCE breakdown through reductive dechlorination). The continued detection of breakdown products along the flow‐path wells also confirms the effectiveness of the MNA remedy at the site. Current analytical data indicate that COC plumes beneath the site are not migrating and are actually retracting. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Stable carbon isotopes have been used in various applications for approximately 50 years, in many applications including the fields of medicine, criminology, and biology and recently has been used in the remediation field to track the degradation of various organic compounds. It is a commercially available investigation technology that is gaining in popularity and has unique applications related to monitored natural attenuation (MNA). To further discuss this technology and how it is used at MNA sites, we presented the following question to five guest panel members. © 2007 Wiley Periodicals, Inc.  相似文献   

7.
Technology and information transfer are critical functions within the remediation industry. Researchers in the private sector, academia, and government all struggle to have their findings accepted and put to good use by the remediation industry at large but must work even harder to have their findings accepted and put into practice by state and federal regulators in the environmental agencies overseeing cleanups. Unfortunately, many technology and information transfer efforts fail to reach state and federal regulators, and even fewer achieve regulatory acceptance. A two‐year‐long campaign to deliver a training class on the natural attenuation of chlorinated solvents in groundwater is one prominent example of very effective technology and information transfer. Several of the elements and aspects of that successful training class are presented and discussed in order to provide others with a proven and workable template. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
This article presents site closure strategies of source material removal and dissolved‐phase groundwater natural attenuation that were applied at two manufactured gas plant (MGP) sites in Wisconsin. The source removal actions were implemented in 1999 and 2000 with groundwater monitoring activities preceding and following those actions. Both of these sites have unique geological and hydrogeological conditions. The article briefly presents site background information and source removal activities at both of these sites and focuses on groundwater analytical testing data that demonstrate remediation of dissolved‐phase MGP‐related groundwater impacts by natural attenuation. A statistical evaluation of the data supports a stable or declining MGP parameter concentration trend at each of the sites. A comparison of the site natural attenuation evaluation is made to compare with the requirements for site closure under the Wisconsin Department of Natural Resources regulations and guidance. © 2003 Wiley Periodicals, Inc.  相似文献   

17.
The development and regulatory acceptance of monitored natural attenuation (MNA) as a remedial strategy has forever changed the field of environmental cleanup. MNA is continuing to develop but it is challenged by a lack of a clear definition for the appropriate application of the MNA strategy. This challenge has resulted in the lack of a significant record of restoration and site closure. Environmental professionals face challenges in providing guidance that addresses how to manage these sites when technologies, performance monitoring, and even environmental conditions are subject to further development, refinement, and/or altered perspectives. As our experience and institutional knowledge grows around the implementation of MNA, we have the opportunity to develop “second‐generation” management tools and procedures for optimizing sites utilizing MNA as a part of a comprehensive site management plan. This opportunity is the focus of the Enhanced Attenuation: Chlorinated Organics (EACO) Team of the Interstate Technology Regulatory Council (ITRC). The development of the “second‐generation” tools/procedures has included defining EA and evaluating, through the use of a national survey of state regulators, the experience with MNA and interest in EA. The results of these two efforts formed the basis for developing a framework that provides a “bridge” from active treatment to MNA. © 2007 Wiley Periodicals, Inc.  相似文献   

18.
The U.S. Department of Energy is conducting a project to accelerate remediation through the use of monitored natural attenuation and enhanced attenuation for chlorinated ethenes in soils and groundwater. Better monitoring practices, improved scientific understanding, and an advanced regulatory framework are being sought through a team effort that engages technology developers from academia, private industry, and government laboratories; site cleanup managers; stakeholders; and federal and state regulators. The team works collaboratively toward the common goals of reducing risk, accelerating cleanup, reducing cost, and minimizing environmental disruption. Cutting‐edge scientific advances are being combined with experience and sound environmental engineering in a broadly integrated and comprehensive approach that exemplifies socalled “third‐generation R&D.” The project is potentially a model for other cleanup activities. © 2004 Wiley Periodicals, Inc.  相似文献   

19.
20.
Endosulfan is an economically important insecticide and widespread environmental pollutant, originating from a wide range of agricultural activities. The major implication from the feasibility study described was that endosulfan I can be remediated by natural attenuation processes in cotton-farming soil, in which concentrations were relatively low, as well as heavily contaminated soil, from an agricultural chemical waste (evaporation) pit. Endosulfan I, the major isomer of endosulfan, was present in agricultural soils with low (2.2 mg/kg) and high (417 mg/kg) concentrations of technical-grade endosulfan. The half-lives of the major isomer of endosulfan were 94 and greater than 350 days in the low-level (cotton farming soil) and high-level (contaminated soil), respectively. Even under conditions of minimal intervention, as in the current study, endosulfan concentrations in contaminated soils can be substantially reduced. The nonbiological process of soil binding was predominantly responsible for the natural attenuation of endosulfan I in both soils. Low levels of mineralization of the chlorinated ring 14C-labelled carbons were also reported, but mineralization did not play an important role in natural attenuation of endosulfan I in either soil studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号