首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous‐phase liquid (DNAPL) compounds during surfactant‐enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost‐effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL‐contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source‐zone treatment. This article provides a critical review of peer‐reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
In situ remediation represents a series of challenges in interpreting the monitoring data on remedial progress. Among these challenges are problems in determining the progress of the remediation and the mechanisms responsible, so that the process can be optimized. The release of organic pollutants to groundwater systems and in situ remediation technologies alter the groundwater chemistry, but outside of natural attenuation studies using inorganic chemical analyses as indicators of intrinsic biodegradation, typically little attention has been paid to the changes in inorganic groundwater chemistry. Smith (2008) noted that during an electrical resistance heating remediation that took place at a confidential site in Chicago, a two‐orders‐of‐magnitude increase in chloride concentrations occurred during the remediation. This increase in chloride resulted in a corresponding increase in calcium as a result of what is known as the common ion effect. Carbon dioxide is the gas found in highest concentrations in natural groundwater (Stumm & Morgan, 1981), and its fugacity (partial pressure) corresponds directly with calcium concentrations. Carbon dioxide at supersaturation in groundwater is capable of dissolving organic compounds, such as trichloroethene, facilitating removal of nonaqueous‐phase liquids at temperatures below the boiling point of water. One means of diagnosing these reactions is through the use of compound‐specific isotopic analysis, which is capable of distinguishing between evaporation, biodegradation, and differences in sources. The appropriate diagnosis has the potential to optimize the benefits from these reactions, lower energy costs for removal of nonaqueous‐phase liquids, and direct treatment where it is needed most. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
In situ remediation is inherently considered “green remediation.” The mechanisms of destruction by in situ technologies, however, are often unseen and not well understood. Further, physical effects of amendment application affect concentration data in an identical manner as the desired reactive mechanism. These uncertainties have led to the weight‐of‐evidence approach when proving viability: multiple rounds of data collection, bench studies, pilot studies, and so on. Skipping these steps has resulted in many failed in situ applications. Traditional assessment data are often tangential to the desired information (e.g., “Is contaminant being destroyed or just being pushed around and diluted?” and “What is the mechanism of the destruction and can it be monitored directly?”). An advanced site diagnostic tool, “Three‐Dimensional Compound Specific Stable Isotope Analysis” (3D‐CSIA), can assess the viability of in situ technologies by providing definitive data on contaminant destruction that are not concentration‐related. The 3D‐CSIA tool can also locate source zones and apportion remediation cost by identifying plumes of different isotope signatures and fractionation trends. Further, use of the 3D‐CSIA tool allows remediation professionals to evaluate effectiveness of treatment and make better decisions to expedite site closure and minimize costs. This article outlines the fundamentals of advanced site diagnostic tool 3D‐CSIA in detail, and its benefit is highlighted through a series of case studies at chlorinated solvent–contaminated sites. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Groundwater contaminated with hexavalent chromium (Cr+6) and chlorinated volatile organic compounds (cVOCs) presents unique in situ remedial challenges in an oxygen‐rich environment. On one hand, chemical oxidation would be effective in treating the cVOCs; however, it would not be appropriate to treat Cr+6. Biological treatment may be appropriate to treat the Cr+6; however, the cVOC degradation pathway within these mixed plumes is currently following an abiotic pathway with little to no daughter‐product production. Thus, a blended approach was needed to treat both constituents in situ in an effort to avoid a long‐term, costly pump‐and‐treat solution. This article evaluates an in situ biogeochemical stabilization/reduction strategy by injecting an inorganic carbon‐based remedial additive into the geologic and hydrogeologic environment to decrease concentrations within the commingled Cr+6 and cVOC plume. The concept involves creating favorable redox reducing conditions to shift the groundwater geochemical equilibrium from the more toxic Cr+6 to the less toxic trivalent chromium (Cr+3), with the final outcome being a conversion to chrome oxide that molecularly fixes to the soil grains. In addition, reducing conditions developed for chromium reduction should result in an increase in the available natural formation iron that should further enhance the natural abiotic reduction of cVOCs. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
A former chlorofluorocarbon manufacturing facility in northern New Jersey was purchased for redevelopment as a warehousing/distribution center as part of the New Jersey Department of Environmental Protection's Brownfields redevelopment initiative. Soil and groundwater at the site were impacted with dense nonaqueous‐phase liquids (chlorinated organic compounds) and light nonaqueous‐phase liquids (petroleum hydrocarbons). The initial remedial strategy (excavation and offsite disposal) developed by prior site owners would have been cost‐prohibitive to the new site owners and made redevelopment infeasible. Mixed remedial technologies were employed to reduce the cost of remediation while meeting regulatory contaminant levels that are protective of human health and the environment. The most heavily impacted soils (containing greater than 95 percent of the contaminant mass) were excavated and treated onsite by the addition of calcium oxide and lime kiln dust coupled with physical mixing. Treated soils were reused onsite as part of the redevelopment. Residual soil and groundwater contamination was treated via in situ injections of emulsified oil to enhance anaerobic biodegradation, and emulsified oil/zero‐valent iron to chemically reduce residual contaminants. Engineering (cap) and administrative (deed restriction) controls were used as part of the final remedy. The remedial strategy presented in this article resulted in a cost reduction of 50 percent of the initial remedial cost estimate. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
The chlorinated solvent stabilizer 1,4‐dioxane (DX) has become an unexpected and recalcitrant groundwater contaminant at many sites across the United States. Chemical characteristics of DX, such as miscibility and low sorption potential, enable it to migrate at least as far as the chlorinated solvent from which it often originates. This mobility and recalcitrance has challenged remediation professionals to redesign existing treatment systems and monitoring networks to accommodate widespread contamination. Furthermore, remediation technologies commonly applied to chlorinated solvent co‐contaminants, such as extraction and air stripping or in situ enhanced reductive dechlorination, are relatively ineffective on DX removal. These difficulties in treatment have required the industry to identify, develop, and demonstrate new and innovative technologies and approaches for both ex situ and in situ treatment of this emerging contaminant. Great strides have been made over the past decade in the development and testing of remediation technologies for removal or destruction of DX in groundwater. This article briefly summarizes the fate and transport characteristics of DX that make it difficult to treat, and presents technologies that have been demonstrated to be applicable to groundwater treatment at the field scale.  ©2016 Wiley Periodicals, Inc.  相似文献   

7.
This article discusses the use of solidification/stabilization (S/S) to treat soils contaminated with organic and inorganic chemicals at wood preserving sites. Solidification is defined for this article as making a material into a freestanding solid. Stabilization is defined as making the contaminants of concern nonmobile as determined from a leaching test. S/S then combines both properties. For more information on S/S in general the reader should refer to other publications (Connors, J.R. [1990]). Chemical fixation and solidification of hazardous wastes. New York: Van Nostrand Reinhold; US Environmental Protection Agency. [1993a]. Engineering bulletin solidification/stabilization of organics and inorganics (EPA/540/S‐92/015); Wiles, C.C. [1989]. Solidification and stabilization technology. In H.M. Freeman [Ed.], Standard handbook of hazardous waste treatment and disposal. New York: McGraw Hill) as this article addresses only wood preserving sites and assumes basic knowledge of S/S processes. For a more general discussion of wood preserving sites and some other remedial options, the reader may wish to refer to a previous EPA publication (US Environmental Protection Agency. [1992a]. Contaminants and remedial options at wood preserving sites [EPA/600/R‐92/182]). This article includes data from the successful remediation of a site with mixed organic/inorganic contaminants, remediation of a site with organic contaminants, and detailed treatability study results from four sites for which successful formulations were developed. Included are pre‐ and post‐treatment soil characterization data, site vaines. ileizdot‐ names (in some cases), treatment formulas used (generic aridproprietary), costs, recommendations, and citatioiis to inore detailed refer‐ en ces. The data presen ted iiidica te that dioxins, pentachlorophepi 01 (PCP), creosote, polycyclic aromatic hydrocarbom (PAHsI, and metals can be treated at moderate cost by the use of S/S techuologp.  相似文献   

8.
The evaluation of microbial responses to three in situ source removal remedial technologies—permanganate‐based in situ chemical oxidation (ISCO), six‐phase heating (SPH), and steam injection (SI)—was performed at Cape Canaveral Air Station in Florida. The investigation stemmed from concerns that treatment processes could have a variety of effects on the indigenous biological activity, including reduced biodegradation rates and a long‐term disruption of community structure with respect to the stimulation of TCE (trichloroethylene) degraders. The investigation focused on the quantity of phospholipid fatty acids (PLFAs) and its distribution to determine the immediate effect of each remedial technology on microbial abundance and community structure, and to establish how rapidly the microbial communities recovered. Comprehensive spatial and temporal PLFA screening data suggested that the technology applications did not significantly alter the site's microbial community structure. The ISCO was the only technology found to stimulate microbial abundance; however, the biomass returned to predemonstration values shortly after treatment ended. In general, no significant change in the microbial community composition was observed in the SPH or SI treatment areas, and even small changes returned to near initial conditions after the demonstrations. © 2004 Wiley Periodicals, Inc.  相似文献   

9.
The injection of remediation compounds has rapidly become a widely accepted approach for addressing contaminated sites. One of the most fundamental questions surrounding the use of in situ remediation has been “What compound are you injecting at your site?” With the advances in the industry's understanding and acceptance of the in situ remediation process remediation professionals are now asking a follow‐up question that has become equally important to the success of a project: “How are you injecting a compound at your site?” This article discusses advances in field applications for in situ remediation and injecting remediation compounds. © 2003 Wiley Periodicals, Inc.  相似文献   

10.
In response to an oxygenated gasoline release at a gas station site in New Hampshire, a temporary treatment system consisting of a single bedrock extraction well, a product recovery pump, an air stripper, and carbon polishing units was installed. However, this system was ineffective at removing tertiary butyl alcohol from groundwater. The subsequent remedial system design featured multiple bedrock extraction wells and an ex situ treatment system that included an air stripper, a fluidized bed bioreactor, and carbon polishing units. Treated effluent was initially discharged to surface water. Periodic evaluation of the remediation system performance led to system modifications, which included installing an additional extraction well to draw contaminated groundwater away from an on‐site water supply well, adding an iron and manganese pretreatment system, and discharge of treated effluent to an on‐site drywell. Later, the air stripper and carbon units were eliminated, and an infiltration gallery was installed to receive treated, oxygenated effluent in order to promote flushing of the smear zone and in situ bioremediation in the source area. This article discusses the design, operation, performance, and modifications to the remediation system over time, and provides recommendations for similar sites. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
Although the reaction mechanics are somewhat mysterious, the use of iron for in situ groundwater treatment has recently gained considerable attention and respect in the remediation industry. The basic scientific principles of both applications of iron have been known for over a century; however, both were nearly unheard of as remediation technologies five years ago. Both technologies have a strong potential for widespread use. They are commercially available, have been proven in field studies, are less expensive than traditional pump and treat technologies, and, in many types of groundwater systems, may be able to meet difficult-to-achieve groundwater treatment standards. As these technologies continue to undergo development, there could be considerably more aggressive applications used to treat ground-water containing high concentrations of chlorinated organics and DNAPLs.  相似文献   

12.
The need for remediation of poly‐ and perfluoroalkyl substances (PFASs) is growing as a result of more regulatory attention to this new class of contaminants with diminishing water quality standards being promulgated, commonly in the parts per trillion range. PFASs comprise >3,000 individual compounds, but the focus of analyses and regulations has generally been PFASs termed perfluoroalkyl acids (PFAAs), which are all extremely persistent, can be highly mobile, and are increasingly being reported to bioaccumulate, with understanding of their toxicology evolving. However, there are thousands of polyfluorinated “PFAA precursors”, which can transform in the environment and in higher organisms to create PFAAs as persistent daughter products. Some PFASs can travel miles from their point of release, as they are mobile and persistent, potentially creating large plumes. The use of a conceptual site model (CSM) to define risks posed by specific PFASs to potential receptors is considered essential. Granular activated carbon (GAC) is commonly used as part of interim remedial measures to treat PFASs present in water. Many alternative treatment technologies are being adapted for PFASs or ingenious solutions developed. The diversity of PFASs commonly associated with use of multiple PFASs in commercial products is not commonly assessed. Remedial technologies, which are adsorptive or destructive, are considered for both soils and waters with challenges to their commercial application outlined. Biological approaches to treat PFASs report biotransformation which creates persistent PFAAs, no PFASs can biodegrade. Water treatment technologies applied ex situ could be used in a treatment train approach, for example, to concentrate PFASs and then destroy them on‐site. Dynamic groundwater recirculation can greatly enhance contaminant mass removal via groundwater pumping. This review of technologies for remediation of PFASs describes that:
  • GAC may be effective for removal of long‐chain PFAAs, but does not perform well on short‐chain PFAAs and its use for removal of precursors is reported to be less effective;
  • Anion‐exchange resins can remove a wider array of long‐ and short‐chain PFAAs, but struggle to treat the shortest chain PFAAs and removal of most PFAA precursors has not been evaluated;
  • Ozofractionation has been applied for PFASs at full scale and shown to be effective for removal of total PFASs;
  • Chemical oxidation has been demonstrated to be potentially applicable for some PFAAs, but when applied in situ there is concern over the formation of shorter chain PFAAs and ongoing rebound from sorbed precursors;
  • Electrochemical oxidation is evolving as a destructive technology for many PFASs, but can create undesirable by‐products such as perchlorate and bromate;
  • Sonolysis has been demonstrated as a potential destructive technology in the laboratory but there are significant challenges when considering scale up;
  • Soils stabilization approaches are evolving and have been used at full scale but performance need to be assessed using appropriate testing regimes;
  • Thermal technologies to treat PFAS‐impacted soils show promise but elevated temperatures (potentially >500 °C) may be required for treatment.
There are a plethora of technologies evolving to manage PFASs but development is in its early stage, so there are opportunities for much ingenuity.  相似文献   

13.
Following years of progress in designing and executing cleanups of contaminants at waste sites, the U.S. Air Force, state regulatory groups, and others are crafting methods to evaluate broader considerations of risk in remedial decisions. Integrating worker and climate risks into remediation efforts may confer significant benefits, but challenges exist to identifying, assessing, and accounting for them in the remedial process. For sites where future risk posed by contamination far exceeds the risk posed to workers who may be exposed to the contaminants during the remedial process, limiting the range of decision inputs to those presented by the site conditions made sense and provided a net benefit to human health and the environment. There are other sites, however, where future risk posed by the in situ contamination are at levels comparable to the real risks posed to workers, ecology, and even emerging concerns about climate change. For these sites, a net risk reduction cannot be assumed to be a result of remedial action, challenging the remedial community to develop new approaches to ensure positive results. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Greenhouse gas emissions assessments for site cleanups typically quantify emissions associated with remediation and not those from contaminant biodegradation. Yet, at petroleum spill sites, these emissions can be significant, and some remedial actions can decrease this additional component of the environmental footprint. This article demonstrates an emissions assessment for a hypothetical site, using the following technologies as examples: excavation with disposal to a landfill, light nonaqueous‐phase liquid (LNAPL) recovery with and without recovered product recycling, passive bioventing, and monitored natural attenuation (MNA). While the emissions associated with remediation for LNAPL recovery are greater than the other considered alternatives, this technology is comparable to excavation when a credit associated with product recycling is counted. Passive bioventing, a green remedial alternative, has greater remedial emissions than MNA, but unlike MNA can decrease contaminant‐related emissions by converting subsurface methane to carbon dioxide. For the presented example, passive bioventing has the lowest total emissions of all technologies considered. This illustrates the value in estimating both remediation and contaminant respiration emissions for petroleum spill sites, so that the benefit of green remedial approaches can be quantified at the remedial alternatives selection stage rather than simply as best management practices. ©2015 Wiley Periodicals, Inc.  相似文献   

15.
The influence of aqueous‐ and mineral‐phase iron on royal demolition explosive (RDX) destruction has been previously investigated in theoretical settings and bench‐scale tests by various practitioners. The feasible use of in situ redox manipulation to create reactive Fe(II) is contingent upon the aquifer containing enough iron oxides and iron‐bearing clay minerals for the treated zone to remain effective. The following is a summary of a bench‐scale assessment of this relationship using aquifer material from an ongoing groundwater remediation effort at the Iowa Army Ammunition Plant (IAAP). A bench‐scale study was designed to determine the relative contributions of the biotic and iron‐mediated abiotic degradation processes to the net decrease in RDX observed at the site using saturated aquifer samples collected from within the RDX plume. Sterilized samples with a sufficient stoichiometric excess of both soluble and mineral‐phase iron reduced concentrations of RDX in both the soil and water fractions to the same extent as the samples containing native biota. These results indicate that in situ, abiotic degradation of RDX is feasible in areas unsuitable to biotic degradation processes, yielding an additional alternative for in situ RDX remediation. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
It is difficult to quantify the range in source strength reduction (MdR) that may be attainable from in situ remediation of a dense nonaqueous‐phase liquid (DNAPL) site given that available studies typically report only the median MdR without providing insights into site complexity, which is often a governing factor. An empirical study of the performance of in situ remediation at a wide range of DNAPL‐contaminated sites determined MdRs for in situ bioremediation (EISB), in situ chemical oxidation (ISCO), and thermal treatment remedies. Median MdR, geometric mean MdR, and lower/upper 95 percent confidence interval for the mean were: 49x, 105x, 20x/556x, respectively, for EISB; 9x, 21x, and 4x/110x for ISCO; and 19x, 31x, and 6x/150x for thermal treatment. Lower MdR values were determined for large, complex sites and for sites with DNAPL pool‐dominated source zones. A feasibility analysis of partial DNAPL depletion is described for a pool‐dominated source zone. Back‐diffusion from low‐hydraulic conductivity units within a pool‐dominated source zone is shown to potentially sustain a secondary source for more than 1,000 years, indicating that aggressive source treatment may not reduce the remediation timeframe. Estimated plume response demonstrates there may be no reduction in cost associated with aggressive treatment, and little difference in risk reduction associated with the various alternatives. Monitored natural attenuation (MNA) for the source zone is shown to be a reasonable alternative for the pool‐dominated source zone considered in this example. It is demonstrated that pool‐dominated source zones with a large range in initial DNAPL mass (250 to 1,500 kg) may correspond to a narrow range in source strength (20 to 30 kg/year). This demonstrates that measured source strength is nonunique with respect to DNAPL mass in the subsurface and, thus, source strength should not be used as the sole basis for predicting how much DNAPL mass remains or must be removed to achieve a target goal. If aggressive source zone treatment is to be implemented due to regulatory requirements, strategic pump‐and‐treat is shown to be most cost effective. These remedial decisions are shown to be insensitive to a range of possible DNAPL pool conditions. At sites with an existing pump‐and‐treat system, a significant increase in mass removal and source strength reduction may be achieved for a low incremental cost by strategic placement of extraction wells and pumping rate selection. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Sustained treatment is an emerging concept used to describe enhancements in attenuation capacity after the conclusion of the active treatment period for a given source‐depletion technology. The term includes mechanisms that lead to contaminant transformation or destruction over extended periods of time, such as endogenous biomass decay, slow diffusion of remedial amendments from low‐permeability zones, and the formation of reactive mineral species. This “value‐added” treatment continues after the end of capital expenditures at a site, and it provides additional insight in determining if monitored natural attenuation is a viable long‐term option for a site. This article identifies several sustained treatment mechanisms, examines technology‐specific factors that contribute to sustained treatment, and explores the potential timescales of sustained treatment relative to active treatment. As demonstrated in post‐treatment site data obtained during a comprehensive source‐depletion technology performance survey, enhanced bioremediation is the most promising in promoting sustained treatment, and this beneficial effect can extend for several years due to factors such as slow biomass decay. There is little evidence that other commonly used technologies (thermal treatment, in situ chemical oxidation, surfactant‐enhanced remediation, or cosolvent flushing) result in any significant sustained treatment. An exception would be a cosolvent flushing project where large quantities of biodegradable cosolvent are left in the subsurface at the end of the project, which could result in sustained long‐term dechlorination activity. In the case of in situ chemical oxidation, factors that contribute to a higher incidence of concentration rebound mask any potential sustained treatment effects. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
This is the first in a series of five articles describing the applicability, performance, and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site‐specific treatability studies conducted under the supervision of the United States Environmental Protection Agency (US EPA), National Risk Management Research Laboratory (NRMRL), from 1995 through 1997 constitute much of the basis for the evaluations presented, although data from other treatability studies, literature sources, and actual site remediations have also been included to provide a more comprehensive evaluation of remediation technologies. This article provides an overview of the wood preserving sites studied, including contaminant levels, and a summary of the performance of the technologies evaluated. The subsequent articles discuss the performance of each technology in more detail. Three articles discuss technologies for the treatment of soils, including solidification/stabilization, biological treatment, solvent extraction and soil washing. One article discusses technologies for the treatment of liquids, water and nonaqueous phase liquids (NAPLS), including biological treatment, carbon adsorption, photolytic oxidation, and hydraulic containment. The reader should be aware that other technologies including, but not limited to, incineration, thermal desorption, and base catalyzed dehalogenation, also have application for treating contaminants on wood preserving sites. They are not discussed in these five articles since the focus was to evaluate lesser known and hopefully lower cost approaches. However, the reader should include consideration of these other technologies as part of any evaluation or screening of technologies applicable to remediation of wood preserving sites.  相似文献   

19.
Since the early 1970s, technologies for remediating organic contamination in soils and groundwater have evolved through three stages with primary emphasis on (1) gross removal processes, (2) active in situ treatment, and (3) risk-based closure and natural attentuation. Technologies for treating metals contamination are evolving through similar stages. In the late 1990s, metals remediation has arrived at the second stage in which a wide range of in situ technologies are available either to extract metals directly from the subsurface or to render them immobile and harmless. In situ geochemical fixation is an example of a commercial technology capable of addressing a wide range of metals contamination sites. Four case histories demonstrate the versatility of this approach. Other promising technologies for treating metals contamination are also emerging. These include geokinetics, biocatalytic precipitation processes, phytoremediation, and artificial wetlands. As our knowledge continues to grow, the most elegant solutions to metals contamination will rely more and more heavily on the soil's natural capacity to stabilize and immobilize metals over time.  相似文献   

20.
Gentle remediation options (GRO) are risk management strategies/technologies that result in a net gain (or at least no gross reduction) in soil function as well as risk management. They encompass a number of technologies, including the use of plant (phyto‐), fungi (myco‐), and/or bacteria‐based methods, with or without chemical soil additives or amendments, for reducing contaminant transfer to local receptors by in situ stabilization, or extraction, transformation, or degradation of contaminants. Despite offering strong benefits in terms of risk management, deployment costs, and sustainability for a range of site problems, the application of GRO as practical on‐site remedial solutions is still in its relative infancy, particularly for metal(loid)‐contaminated sites. A key barrier to wider adoption of GRO relates to general uncertainties and lack of stakeholder confidence in (and indeed knowledge of) the feasibility or reliability of GRO as practical risk management solutions. The GREENLAND project has therefore developed a simple and transparent decision support framework for promoting the appropriate use of gentle remediation options and encouraging participation of stakeholders, supplemented by a set of specific design aids for use when GRO appear to be a viable option. The framework is presented as a three phased model or Decision Support Tool (DST), in the form of a Microsoft Excel‐based workbook, designed to inform decision‐making and options appraisal during the selection of remedial approaches for contaminated sites. The DST acts as a simple decision support and stakeholder engagement tool for the application of GRO, providing a context for GRO application (particularly where soft end‐use of remediated land is envisaged), quick reference tables (including an economic cost calculator), and supporting information and technical guidance drawing on practical examples of effective GRO application at trace metal(loid) contaminated sites across Europe. This article introduces the decision support framework. ©2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号