首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
亚硝酸盐氧化菌(NOB)增长是导致城市污水短程硝化-厌氧氨氧化(partial nitrification/anammox,PN/A)工艺脱氮效率降低的主要原因之一.采用SBR反应器研究了周期性的进水氨氮负荷变化对城市污水PN/A工艺出水硝酸盐的影响.结果表明:恒定曝气量和曝气时间,进水氨氮负荷周期性降低时,PN/A工艺出水硝态氮逐渐增长,导致系统脱氮性能下降.在硝态氮增长之后,保持进水氨氮负荷稳定,系统的脱氮性能未恢复.进一步分析表明:低氨氮浓度下,NOB对于溶解氧的竞争是出水硝态氮增长的主要原因.因此,在城市污水PN/A工艺中,为了维持稳定的脱氮性能需要控制溶解氧和出水氨氮浓度.  相似文献   

2.
低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮   总被引:13,自引:4,他引:9  
针对低碳氮比猪场废水传统脱氮法碳源不足的问题,采用SBBR反应器进行短程硝化反硝化-厌氧氨氧化联合脱氮.实验表明,短程硝化反硝化预处理可为厌氧氨氧化创造良好的进水条件;经预处理的猪场废水厌氧氨氧化脱氮效果显著,氨氮、亚硝态氮和总氮的平均去除率分别为91.8%、 99.3%、 84.1%,废水中残留有机物未对厌氧氨氧化效果产生明显影响,氨氮、亚硝态氮、硝态氮平均变化量之比为 1∶1.21∶0.24.色质联用分析结果显示,猪场废水中有机物成分在厌氧氨氧化反应前后未发生明显变化,主要化合物为酯类和烷烃类物质;特殊功能菌种检测结果表明,实验条件下的微生物系统是一个厌氧氨氧化菌与硝化菌、亚硝化菌和反硝化菌共存的系统,厌氧氨氧化菌是该系统主要脱氮功能菌.  相似文献   

3.
严锋  袁林江  王洋  赵嘉琪 《环境科学学报》2017,37(12):4602-4609
在Anammox-UASB反应器中研究了亚硝氮停供及恢复供给后不同进水亚硝氮/氨氮比(R_I)对Anammox系统脱氮的影响,对Anammox系统停供亚硝氮培养后的污泥微生物群落进行了分析.结果表明,Anammox反应器在长期停供亚硝氮培养后,微生物多样性增加,氨氧化菌(Nitrosomonas)和Anammox菌都大量增殖,这两种微生物通过协同作用使得部分氨氮得以去除,NH_4~+-N最大去除速率可达68.77 mg·L~(-1)·d~(-1),出水p H低于进水.反应器恢复亚硝氮供给后,脱氮效果快速恢复.Anammox反应器中存在的氨氮"超量去除"现象是由氨氧化菌作用引起的,氨氧化菌活性易受亚硝氮浓度抑制.氨氮"超量去除"量占氨氮总去除量的百分比与R_I呈负相关关系.当R_I为0.17时,氨氮"超量去除"量占氨氮总去除量的百分比高达68.83%;当R_I增加到1.30∶1后,氨氮"超量去除"现象基本消失.  相似文献   

4.
为了探究游离亚硝酸(FNA)旁侧处理絮体污泥来恢复城市污水短程硝化/厌氧氨氧化一体化(PN/A)工艺的可行性,考察了不同浓度FNA对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响,探究了SBR反应器两次采用FNA处理絮体污泥的运行效果.结果表明:采用0.45mgHNO2-N/L的FNA处理能够抑制NOB活性,亚硝积累率(NAR)达88.8%,但投加后第8d开始NOB活性逐渐恢复.采用1.35mgHNO2-N/L的FNA处理能够显著抑制NOB活性,NAR达89.1%,与此同时AOB活性也受到抑制,氨氮转化率降低为6.8%.采用增大好/缺氧时间比即t/t(由0.4~2.7)以及提高DO(由0.3~1.5mg/L)的方法能够恢复AOB活性,氨氮转化率达77.8%,在150d内NOB活性未恢复,NAR达98.1%.随着短程硝化的稳定实现,系统脱氮性能逐渐恢复,平均出水总无机氮(TIN)为8.2mg/L,平均TIN去除率为84.1%.因此,通过先用较高FNA处理絮体污泥同时抑制AOB与NOB,再采用增大t/t并提高DO来恢复AOB活性的策略,能够实现PN/A工艺短程硝化的恢复.  相似文献   

5.
通过批试实验研究了同步亚硝化、厌氧氨氧化和反硝化(SNAD)生物膜的脱氮性能.SNAD生物膜具有良好的厌氧氨氧化和反硝化活性.厌氧氨氧化NH_4~+-N、NCV-N和总无机氮(TIN)去除速率分别为0.121,0.180,0.267kgN/(kgVSS·d);反硝化和亚硝态氮氧化活性分别为0.211,0.053kg NO_2~--N/(kg VSS·d).SNAD生物膜厌氧氨氧化适宜的pH值范围为5~9,生物膜有助于缓解pH值对厌氧氨氧化菌的抑制作用.SNAD生物膜对NO_2~--N和FNA的抑制作用表现出良好的耐受能力.当NO_2~--N浓度分别为100,150mg/L时,对应的FNA浓度分别为70,100ng/L,厌氧氨氧化NH_4~+-N去除速率分别为0.087,0.029kg N/(kg VSS·d).扫描电镜显示,在SNAD生物膜表面主要是一些短杆菌.在SNAD生物膜内部主要为火山口状细菌,应为厌氧氨氧化菌.  相似文献   

6.
利用UASB反应器分别在降低进水亚硝氮/氨氮比(R)和停供亚硝氮条件下研究了Anammox体系运行特性.发现随着进水亚硝氮减少,亚硝氮与氨氮去除摩尔比减小,发生氨氮超量去除现象,即使进水无亚硝氮时也可去除氨氮.当R为1:2时,氨氮超量去除量达最大,均值为57.2mg/L;长期停供亚硝氮条件下氨氮能够稳定去除,平均去除量为45.6mg/L.停供亚硝氮后Anammox体系中微生物群落多样性增加,AnAOB、氨氧化菌和反硝化菌相对丰度均增加.其中AnAOB相对丰度从9.44%增长到13.26%;氨氧化菌相对丰度从3.29%增长到7.3%;反硝化菌相对丰度由0.54%增加到3.14%.研究表明,溶解氧是氨氮超量去除量的限制性因素,氨氮超量去除的途径包括:好氧氨氧化、厌氧氨氧化与部分内碳源反硝化.在微量溶解氧作用下,主要是氨氧化菌与厌氧氨氧化菌协同实现了氮的去除.  相似文献   

7.
利用UAFB反应器富集培养了厌氧氨氧化细菌,并在此基础上考察水力停留时间(HRT)对厌氧氨氧化系统处理效果的影响。结果表明:HRT对厌氧氨氧化系统影响较大,当HRT为4 h时,系统出水NH4+-N、NO2--N去除率降至65%~60%,出水浓度则分别为15 mg/L、20 mg/L,表明过短HRT会导致含氮污染物去除不完全;HRT为6 h时,系统中NH4+-N去除率均在95%以上,出水NH4+-N≈1 mg/L。系统中NO2--N去除率均在92%以上,出水NO2--N≤5 mg/L;当HRT继续延长至10 h,去除效果无明显变化,出水NH4+-N≈1 mg/L,NO2--N≤5 mg/L,NO3--N平均5.6 mg/L。因此,在该研究中HRT为6 h效果最佳,总氮容积去除负荷为0.57 kg/(m3·d),厌氧氨氧化(ANAMMOX)反应器氨氮去除量、亚硝态氮去除量和硝态氮生成量之比为1∶1.19∶0.39。  相似文献   

8.
全程自养脱氮颗粒污泥培养及动力学研究   总被引:3,自引:1,他引:2  
SBR反应器接种厌氧颗粒污泥,经过3个阶段培养,成功培养出全程自养脱氮颗粒污泥,并对颗粒污泥系统进行动力学研究.建立了描述全程自养脱氮的动力学模型.由于溶解氧(DO)在颗粒污泥内呈梯度分布,模型引入DO校正系数.通过模型研究反硝化作用、亚硝酸盐和DO对过程的影响,模拟结果与实测结果相一致.结果说明,异养反硝化菌的存在,在一定程度上影响厌氧氨氧化(ANAMMOX)过程,但是随着启动的进行,反硝化的影响逐渐降低.初始亚硝酸盐浓度为20~30 mg/L时,厌氧氨氧化开始受到抑制,总氮去除率开始降低.DO浓度的过高或过低都会导致全程自养脱氮效果受限制.根据进水氨氮浓度调整DO浓度,可使总氮去除效率达到较佳水平.进水氨氮浓度为80 mg/L时,最佳DO为0.3~0.6 mg/L.  相似文献   

9.
通过模拟A/O污水处理工艺,文章研究了不同的进水氨氮(NH_4~+-N)浓度下,实现亚硝态氮(NO_2~--N)稳定累积的过程和机理,并对其进行反应动力学分析。结果表明,反应器进水NH_4~+-N浓度从40 mg/L开始,100、200、400、600、800 mg/L,最终浓度提高到1 000mg/L的梯度变化下,氨氧化速率的下降比率最高为36.4%、亚硝酸盐氧化速率的的下降比率最高为96.0%,对亚硝酸盐氧化菌活性抑制效果显著。1 000 mg/L进水NH_4~+-N浓度下NO_2~--N累积速率随溶解氧(DO)升高而提高,DO超过4.5 mg/L时NO_2~--N累积速率接近最大值,但结合实际经济效益与工程实践考虑DO取3.0~3.5 mg/L之间实现短程硝化效果最佳。使用莫诺模型拟合氨氧化菌(AOB)动力学行为,进水NH_4~+-N浓度从40 mg/L提高到1 000 mg/L,反应器最大NH_4~+-N比氧化速率由0.23 d~(-1)上升到0.74 d~(-1),AOB利用底物更快。  相似文献   

10.
耦合厌氧氨氧化反应的高氮负荷型双室MFC性能研究   总被引:1,自引:0,他引:1  
实验针对厌氧氨氧化反应在双室型MFC阳极和阴极2种形式的耦合,将厌氧氨氧化菌分别接种于a、b-双室型MFC的阳、阴极,并探究其产电、脱氮性能及脱氮机理.结果表明,2种类型的MFC均可在NH+4-N、NO-2-N浓度分别为400 mg·L-1和528 mg·L-1的高氮浓度模拟配水条件下稳定启动.与开路状态下的线性关系曲线不同,2类MFC在闭路状态下氨氮、亚硝态氮浓度均呈单指数关系衰减曲线,脱氮效率显著提高,周期内氨氮、亚硝态氮去除率均分别达到99%和85%以上.另外a、b-MFC平均容积氮去除负荷分别为0.417 kg·m-3·d-1和0.516 kg·m-3·d-1.在外阻1500Ω条件下,a-MFC最高输出电压48.0 m V,b-MFC最高输出电压可达到502.2 m V,b-MFC稳定输电周期约2170 min.  相似文献   

11.
地表环境氮循环过程中微生物作用及同位素分馏研究综述   总被引:1,自引:0,他引:1  
综述了氮循环过程中的微生物作用及其研究进展 ,阐述了生物固氮、微生物吸收同化、有机氮素矿化、硝化和反硝化的反应机理及反应过程中的同位素分馏 ,提出了微生物驱动氮循环的简要模型。微生物驱动的氮循环中不同过程有不同的同位素分馏特征 ,生物固氮、土壤有机氮矿化过程中分馏效应小 ,而吸收同化、硝化和反硝化过程中同位素分馏较大 ,利用各个过程不同的同位素分馏特征可示踪含氮物质的来源、转化和迁移等。  相似文献   

12.
氮同位素示踪贵州红枫湖河流季节性氮污染   总被引:34,自引:1,他引:33  
利用氮同位素技术对贵州红枫湖各输入、输出河流氮污染状况和季节性变化规律进行了研究,并通过对输入河流和输出河流的氮对比,探讨红枫湖的氮负荷变化。农业输入河流季节氮污染变化较小,以低硝酸盐、低铵盐含量为特征,其氮同位素组成较小,位于农业源范围之内(<+10‰)。工业污染河流氮污染呈干季和雨季变化:干季(冬春季)以高硝酸盐、高铵盐含量和高氮同位素组成(>+10‰)为特征,雨季(夏季)则相似于农业输入河流。因而利用氮同位素组成可以对不同类型河流氮污染源进行可靠识别。  相似文献   

13.
本文概述了土壤中含氮化合物的排放源、通量及其对环境的主要影响 ,并就这些氮素污染物与土壤理化因子和氮肥施用量之间的关系进行了简要的分析  相似文献   

14.
NOx气体的催化治理   总被引:5,自引:0,他引:5  
综述了NOx—H2反应的机理,介绍了催化剂的特点及影响催化剂性能的主要因素  相似文献   

15.
底泥中氮的主要迁移转化过程及其转化模型的研究   总被引:7,自引:0,他引:7  
研究了NO_3~--N,NH_4~+-N在底泥中的扩散、吸附以及NO_3~--N的反硝化等过程.结果表明,在泥-水界面间,NH_4~+-N主要向上浮水中扩散,NO_3~--N主要向间隙水中扩散.扩散到间隙水中的NO_3~--N45%被吸附,30%因反硝化作用而失掉,其反硝化速率常数在7—11cm层最大.氮的吸附速率常数在表层最大.建立了间隙水中NO_3~--N和NH_4~+-N的转化模型,并计算了氮在泥-水界面间的扩散量,计算结果与实测结果基本相符.  相似文献   

16.
土壤过滤净化氮氧化物实验研究   总被引:3,自引:0,他引:3  
实验考察了土壤类型、进口浓度、温度和过滤气速对净化氮氧化物废气效果的影响。结果表明 ,土壤过滤能够有效削减NOx 污染 ,对NO2 的净化效率可达 90 %以上 :肥沃土壤的净化效率明显高于贫瘠土壤 ,适宜作为过滤介质 ;在实验浓度范围内 ,净化效率基本随着进口浓度的提高而提高。当进口浓度高于 2mg m3时 ,净化效率基本稳定在95 %左右 ;温度的升高对提高去除率是有利的 ,而且对延长土壤滤池有效使用时间有很大帮助 ;在实验范围内气速的提高对NO2 去除率影响不明显。  相似文献   

17.
生物滴滤池反硝化脱氮试验研究   总被引:5,自引:0,他引:5  
采用一套内部填充多孔蜂窝陶瓷填料的生物滴滤池,研究了在不同温度下3种不同类型的碳源(甲醇、醋酸钠和葡萄糖)以及不同的C N对于系统反硝化效果的影响。结果表明,不同碳源对于系统的反硝化能力有很大的影响,采用甲醇和葡萄糖不会引起亚硝酸盐的积累,而醋酸钠会引起明显的亚硝酸盐积累,在硝酸盐基本消耗完的时候达到最大的积累值(初始硝酸盐总量的2 0 % )。不同碳源的最佳操作温度有所不同,3种碳源在4 0℃下都具有较好的反硝化效果。  相似文献   

18.
针对氮氧化物(NOx)废气瞬时爆发性浓度极高、气量大,难于治理的危害特性,设计了一套适合敞开作业的通风净化系统装置。该工程既解决了原有NOx废气处理工艺的难题,提高NOx废气处理技术,又解决了"黄龙"对大气的污染,达到保护环境与社会和谐的统一。  相似文献   

19.
污染水体中三氮转化过程的模拟研究   总被引:1,自引:0,他引:1  
以城市河涌污染水体为研究对象,通过模拟实验,研究了水体中的三氮转化规律及其与环境条件的关系。实验结果表明:室内和室外条件下氨氮转化十分迅速,亚硝酸盐氮和硝酸盐氮没有出现明显的累积现象;而在培养箱中,亚硝酸盐氮和硝酸盐氮则出现明显的累积现象。此外还研究了光合细菌对水体三氮转化的影响,发现其在室内和室外条件下有利于水体中的三氮转化,而对培养箱条件下的三氮转化起抑制作用。  相似文献   

20.
研究了用厌氧氨氧化(ANAMMOX)去除高含氮废水除氮工艺,结果发现,在不同进水氨浓度的条件下,氨的平均去除效率可达70%左右,也得到了进水氨浓度与氨去除率呈负相关的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号