首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
A simple and highly effective stabilization/solidification (S/S) technology of elemental mercury using only sulfur with paraffin is introduced. First, elemental mercury is mixed with an excess of sulfur powder and heated to 60 degrees C for 30 min until elemental mercury is converted into mercuric sulfide (HgS black, metacinnabar) (Step 1). Then, metacinnabar with additional sulfur is poured into liquid paraffin (Step 2). Finally, the mixture is melted at 140 degrees C and settles to the bottom of the vessel where it cools and solidifies under the layer of liquid paraffin (Step 3). The proposed S/S method with sodium sulfide nonahydrate (Na2S x 9H2O) as an additive is also tested for comparison. The average toxicity characteristic leaching procedure test values are 6.72 microg/L (no additive) and 3.18 microg/L (with additive). Theses concentrations are well below the Universal Treatment Standard (25 microg/L). Effective diffusion coefficient evaluated from accelerated leach test and average headspace concentration of Hg vapor after 18 hr are 3.62 x 10(-15) cm2/sec, 0.55 mg/m3 (no additive) and 5.86 x 10(-13) cm2/sec, 0.25 mg/m3 (with additive).  相似文献   

2.
A J Renneberg  M J Dudas 《Chemosphere》2001,45(6-7):1103-1109
There are many industrial sites, such as gas processing plants, that are contaminated with both mercury and hydrocarbons. These sites tend to be localized but can have very high concentrations of mercury in the soil and heterogeneous distribution of hydrocarbons. The original form of mercury in many cases was elemental mercury from broken manometers. Over time the mercury has become redistributed within soil and has undergone chemical transformations into new forms. The forms of mercury will govern the chemical behavior and the availability of the mercury to biological receptors. The availability of the mercury is important as it will govern the risk associated with the contaminated soil and will also determine the effectiveness of any attempts at remediation. In the present study a chemical extraction protocol was used to determine the forms of mercury in soil originally contaminated by spillage of elemental mercury and petroleum hydrocarbons. Chemical extractions have been used in the past to determine the forms of mercury in uncontaminated soils and several researchers have used them to study contaminated soils. However, to date, no researchers have studied the forms of mercury in soils following years of weathering of elemental mercury after a spill. This study shows that decades after the original spill the elemental mercury has transformed and is dominantly (up to 85%) associated with soil organic matter, and to a lesser extent the mineral fraction of soil.  相似文献   

3.
吴丹萍  李芳芳  赵婧  王朋  吴敏 《环境工程学报》2019,13(11):2562-2569
为了区分生物炭对有机物降解的因素,通过控制光照条件、气体氛围、 · OH淬灭等实验对生物炭降解有机染料罗丹明B(rhodamine-B, RhB)的过程进行了考察;采用元素分析、电子顺磁共振、总有机碳分析仪对生物炭颗粒、持久性自由基(environmental persistent free radicals, EPFRs)及溶解性有机质(dissolved organic matter, DOM)进行了表征测定;研究了不同实验条件下,不同热解温度制备的水稻秸秆生物炭对RhB的吸附和降解效果。结果表明:在200 ℃和500 ℃下所制备的生物炭中检测到明显的EPFRs信号,但其强度与RhB的降解程度不匹配;200 ℃制备的生物炭中DOM含量显著高于其他温度条件下制备的生物炭;在光降解实验中,紫外光能明显促进200 ℃生物炭对RhB降解;气体氛围实验进一步证明紫外光可诱导DOM与生物炭颗粒中EPFRs相互作用形成大量的活性氧组分(主要为$ {\rm{O}}_2^{ \cdot - }$),进而促进了其对RhB的降解。  相似文献   

4.
Aniline and 2,4,6-trinitrotoluene (TNT) were equilibrated with particulate (POM) and dissolved organic matter (DOM) from an organic soil at different compositions of adsorbed major cations (Na, Al) and pH (aniline: 3.7–5.1, TNT: 4.8–5.0). After separation of POM, concentrations of 14C-labelled aniline and TNT* (including TNT degradation products) were determined in DOM size fractions using size-exclusion chromatography (SEC) and UV-detection. Concentrations in the <3.5 kDa size fraction were 2.8–6.0 and 8.5–9.5 times higher for aniline and TNT*, respectively, as compared to the >40 kDa fraction. Thus, both aniline and TNT* were preferentially associated to the smallest DOM size fraction. The significant binding to DOM (similar extent as to POM) and the fact that the <3.5 kDa DOM fraction was less susceptible to flocculation by major metals suggests that the mobility of aniline and TNT is highly affected by the solubility of soil organic matter.  相似文献   

5.
Lou T  Xie H  Chen G  Gagné JP 《Chemosphere》2006,64(7):1204-1211
Dissolved organic matter (DOM) in natural waters can bind various organic pollutants, and the affinity of this binding is strongly influenced by the chemical characteristics of the DOM and water pH. This study examined the effects of photochemically induced alteration of the DOM's chemical properties and water pH on the binding of benzo(a)pyrene (BaP). Time- and pH-series of solar-simulated irradiations were performed on a natural water sample and aqueous DOM solutions prepared from aquatic and soil humic substances. The binding affinity of BaP, expressed as a partition coefficient of a compound to DOM, decreased substantially after the DOM samples were irradiated over environmentally relevant radiation doses and pH ranges. The lowering of the pH due to the photoproduction of acidic products often partly offsets the reduction of the binding affinity caused by direct photoalteration of the DOM's chemical structure. The decrease of the binding affinity, after correction for the photoinduced pH change, was positively correlated with the decrease in the molecular weight and the aromaticity of the DOM in the course of irradiation. Increasing O(2) abundance accelerated the decrease of the binding affinity as a result of enhanced DOM photodegradation. Visible light played a more important role in reducing the molecular weight and aromaticity of the DOM than in reducing the content of dissolved organic carbon (DOC) via photoremineralization while the reverse was true for UV radiation, indicating that photochemical reduction of the binding affinity may occur in natural waters at depths greater than UV radiation can reach. A decrease of the affinity of DOM for binding BaP will increase the free dissolved fraction of BaP and thus its availability and toxicity to aquatic organisms. The results from this study may have similar implications for organic pollutants other than BaP.  相似文献   

6.
Dissolved organic matter and estrogenic potential of landfill leachate   总被引:1,自引:0,他引:1  
Lü F  Zhang H  Chang CH  Lee DJ  He PJ  Shao LM  Su A 《Chemosphere》2008,72(9):1381-1386
The estrogenic potentials of leachate samples collected at Laogang Sanitary Landfill in Shanghai, China were measured together with the associated dissolved organic matter (DOM) in leachate samples. Over 99% of the DOM in fresh leachate was removed upon 3-7 years of landfill, leaving only DOM with strong fluorescent activity. Anoxic or aerobic treatment of landfill leachate can further degrade DOM of MW<300 Da and transform those with fluorescent activity of MW>10(5) Da to those of 2000-10(5) Da. Neither landfilling nor storage in anoxic pond effectively removed estrogenic potential of leachate. Fractionation test revealed that residual organic matters of MW 3000-14000 Da and of <600 Da with high UV254 contributed most of the estrogenic activities in leachate. Aerobic SBR treatment considerably reduced the estrogenic potential of these organic matters in leachate.  相似文献   

7.
King JK  Harmon SM  Fu TT  Gladden JB 《Chemosphere》2002,46(6):859-870
A pilot-scale model was constructed to determine if a wetland treatment system (WTS) could effectively remove low-level mercury from an outfall located at the Department of Energy's Savannah River Site. Site-specific hydrosoil was planted with giant bulrush, Scirpus californicus, and surface amended with gypsum (CaSO4) prior to investigating the biogeochemical dynamics of sediment-based sulfur and mercury speciation. On average, the pilot WTS decreased total mercury concentrations in the outfall stream by 50%. Transformation of mercury to a more "bioavailable" species, methylmercury, was also observed in the wetland treatment system. Methylmercury formation in the wetland was ascertained with respect to sediment biogeochemistry and S. californicus influences. Differences in sulfate-reduction rates (SRRs) were observed between mesocosms that received additional decomposing Scirpus matter and mesocosms that were permitted growth of the submerged macrophyte, Potamogeton pusillus. Relative abundance measurements of sulfate-reducing bacteria (SRB) as characterized using oligonucleotide probes were also noticeably different between the two mesocosms. A positive correlation between increased sulfide, dissolved total mercury, and dissolved methylmercury concentrations was also observed in porewater. The data suggest that soluble mercury-sulfide complexes were formed and contributed, in part, to a slight increase in mercury solubility. Observed increases in methylmercury concentration also suggest that soluble mercury-sulfide complexes represent a significant source of mercury that is "available" for methylation. Finally, a volunteer macrophyte, Potamogeton pusillus, is implicated as having contributed additional suspended particulate matter in surface water that subsequently reduced the pool of dissolved mercury while also providing an environment suitable for demethylation.  相似文献   

8.
A chemical equilibrium-based predictive model expressing Cu partitioning as a function of aqueous and solid phase characteristics was developed. The model takes into account only the most important factors that govern Cu partitioning, and therefore results in a relatively simple formulation. It assumes particulate organic carbon (POC) and dissolved organic carbon (DOC) binding sites play the most important role in solid and aqueous phases. The model formulation assumed one-surface site and two dissolved organic matter (DOM) sites, and included the "solids effect". Proton effects were considered for both the particle surface sites and the DOM. The model was calibrated with data for samples collected from the Susquehanna River, and validated with White Clay Creek and Delaware River samples. Copper partitioning in natural water systems with different pH, and concentrations of alkalinity, DOC, POC, total suspended solids (TSS), and total copper was predicted reasonably well.  相似文献   

9.
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.  相似文献   

10.
The interaction of Cu with dissolved organic matter (DOM, extracted from an organic forest floor) was investigated and the resulting data was evaluated in terms of their uncertainty. The speciation of Cu over ‘free’ Cu (as analysed by diffusive gradients in thin films (DGT)), dissolved Cu–DOM complexes and precipitated Cu–DOM was determined as a function of pH (3.5, 4.0 and 4.5) and Cu/C ratio. The dissolved organically bound fraction was highest at pH 4.5, but this fraction decreased with increasing Cu/C ratio, which was observed for all pH levels. In the range of Cu/C=7×10−5–2.3×10−2 (mol/mol) the precipitated fraction was very small. The speciation of both Al and Fe was not affected by increasing Cu concentrations. From a continuous distribution model using the Scatchard approach, we calculated the optimal fit and corresponding upper and lower 95% uncertainty bounds of the overall stability constants (Ko) with the shuffled complex evolution Metropolis (SCEM) algorithm. Although the optimal equation fitted the data very well, the uncertainty of the, according to literature, most reliable approach to establish stability constants, was still large. Accordingly, the usually reported intrinsic stability constants exhibited large uncertainty ranging from logKi=6.0–7.1 (optimal 6.7) for pH 3.5, logKi=6.5–7.1 (optimal 6.8) for pH 4.0, and logKi=6.4–7.2 (optimal 6.8) for pH 4.5 and showed only little effect of pH.  相似文献   

11.

Introduction

Dissolved organic matter (DOM) is the most active component in environmental system and its chemical and structural characteristics most likely influence its biodegradation. Four surface soil (0?C20?cm) and three core sediment samples (0?C10?cm) were collected from Wuliangsuhai Lake. The objectives of this study were to investigate the spectral properties and humification degree of DOM and to determine and discuss comparatively the complexing capacities and stability constants of DOM by Cu (II) in the Hetao region.

Materials and methods

In this study, fluorescence spectra and fluorescence quenching methods were used to evaluate the humification degree of DOM and calculate the complexing capacities and the stability constants between DOM and Cu (II).

Results and discussion

Two defined peaks, at wavelengths of 260??300?nm (peak I) and 300??350?nm (peak II), could be identified for soil DOM at a ???? value of 30?nm. In sediment DOM extracts, a third peak (III) was observed near 364?nm. The results show that there is a significant difference in the structure of DOM because of different sources. The humification degree is significantly higher for soil samples than those of sediment samples. The FT-IR spectra of DOM show that structure in sediment DOM is more functional groups than those in soil DOM. DOM has a stronger Cu binding affinity in soils than in sediment in the Hetao region, which may lead to potentially significant influence on the migration and transformation of Cu (II).  相似文献   

12.
The affinity of dissolved organic matter (DOM) for binding a polycyclic aromatic hydrocarbon, benzo(a)pyrene (BaP), was measured for 11 surface and ground waters and a commercial humic acid. The hydrophobic-acid (HbA) and hydrophobic-neutral (HbN) compositions of the DOM, solution absorptivity at 270nm (ABS270), and DOM molar volumes were determined. Waters enriched in HbA material had a larger molar volume and higher aromatic content (as indicated by the ABS270). There was a good correlation between the size and HbA content of the DOM from the different sources and the Kdom for binding BaP. An excellent predictive relationship (r2 = 0.9) was demonstrated between the ABS270 of a water and the Kdom for binding BaP. Based on these results, it is suggested that binding of BaP to DOM depends not only on the hydrophobicity of DOM, but also on the existence of an open structure within the DOM to provide access of the aqueous solute to hydrophobic domains within the DOM.  相似文献   

13.
以磺胺二甲嘧啶(SM2)为目标污染物,研究了高压汞灯和紫外灯两种光源和初始浓度对SM2光解的影响以及SM2在二级出水中光解的主要影响因素,并通过自由基猝灭实验确定SM2光解过程中的主要活性物质。结果表明:SM2在紫外灯下的光解速率是高压汞灯的2.6倍;SM2光解速率随其初始浓度的增加而减慢。SM2在二级出水中的光解速率是纯水中的2.5倍,溶解性有机质(DOM)能显著促进SM2的光解。SM2在纯水中光解主要是激发三重态SM2(3SM2*)参与的直接光解过程,其自敏化光解不利于SM2的光解;含有DOM的溶液中,激发三重态DOM(3DOM*)参与的敏化光解是促进SM2光解的主要原因。  相似文献   

14.
以玉米秸秆为原料,氯化锌(ZnCl2)和硫(S)为改性剂,使用限氧热解法制备改性生物炭,并利用正交实验优化改性生物炭的制备条件;以浸出液汞浓度和汞形态含量变化为指标,评价改性玉米秸秆生物炭对汞污染土壤的稳定化效果,并确定了改性生物炭的最佳添加量.结果表明,通过Zn1Cl2和S的改性可以提高生物炭对土壤中汞的稳定化能力;...  相似文献   

15.
Waite DT  Snihura AD  Liu Y  Huang GH 《Chemosphere》2002,49(3):341-351
Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. The atmosphere is one of the most important media for the environmental cycling of mercury, since it not only receives mercury emitted from natural sources such as volcanoes and soil and water surfaces but also from anthropogenic sources such as fossil fuel combustion, mining and metal smelting. Although atmospheric mercury exists in different physical and chemical forms, as much as 90% can occur as elemental vapour Hg0, depending on the geographic location and time of year. Atmospheric mercury can be deposited to aquatic ecosystems through both wet (rain or snow) and dry (vapour adsorption and particulate deposition) processes. The purpose of the present study was to measure, under laboratory conditions, the rate of deposition of gaseous, elemental mercury (Hg0) to deionized water and to solutions of inorganic salt species of varying ionic strengths with a pH range of 2-12. In deionized water the highest deposition rates occurred at both low (pH 2) and high (pH 12). The addition of different species of salt of various concentrations for the most part had only slight effects on the absorption and retention of atmospheric Hg0. The low pH solutions of various salt concentrations and the high pH solutions of high salt concentrations tested in this study generally showed a greater tendency to absorb and retain atmospheric Hg0 than those at a pH closer to neutral.  相似文献   

16.
Selected water quality parameters and spectroscopic characteristics of dissolved organic matter (DOM) were examined during two different seasons for an artificial coastal lake (Shiwha Lake in South Korea), which are affected by seawater exchange due to the operation of a tidal power plant and external organic loadings from the upstream catchments. The coastal lake exhibited much lower concentrations of organic matter and nutrients than the upstream sources. The spectroscopic properties of the lake DOM were easily distinguished from those of the catchment sources as revealed by a lower absorption coefficient, lower degree of humification, and higher spectral slopes. The observed DOM properties suggest that the lake DOM may be dominated by smaller molecular size and less condensed structures. For the lake and the upper streams, higher absorption coefficients and fluorescence peak intensities but lower spectral slopes and humification index were found for the premonsoon versus the monsoon season. However, such seasonal differences were less pronounced for the industrial channels in the upper catchments. Three distinctive fluorophore groups including microbial humic-like, tryptophan-like, and terrestrial humic-like fluorescence were decomposed from the fluorescence excitation-emission matrix (EEM) of the DOM samples by parallel factor analysis (PARAFAC) modeling. The microbial humic-like component was the most abundant for the industrial channels, suggesting that the component may be associated with anthropogenic organic pollution. The terrestrial humic-like component was predominant for the upper streams, and its relative abundance was higher for the rainy season. Our principal component analysis (PCA) results demonstrated that exchange of seawater and seasonally variable input of allochthonous DOM plays important roles in determining the characteristics of DOM in the lake.  相似文献   

17.
Peng SH  Wang WX  Li X  Yen YF 《Chemosphere》2004,57(8):839-851
We quantified the concentrations and distributions of metals (Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of Tuen Mun River, Hong Kong. The potential bioavailability of metals was assessed with a biomimetic extraction method using the sipunculan gut juices. The sediments were characterized by relatively high concentrations of trace metals. Field collected sediments were highly anoxic and the ratio of simultaneously extractable metal (sigmaSEM) to acid volatile sulfide (AVS) was much less than one in these sediments. The majority (>67%) of Cd, Pb, and Zn were bound to AVS, thus their concentrations in the sediment porewater were low. In contrast, Ni was little bound to AVS due to its lower ratios of SEM-Ni to total Ni concentrations. For Cu, relatively high concentrations in the sediment porewater was found, and total organic carbon, AVS and other resistant sulfide phase were the controlling factors for sedimentary Cu partitioning. Net metal adsorption from gut juices to anoxic sediments was observed in metal extraction experiments, suggesting that AVS determined the bioaccumulation and potential bioavailability of most metals in these sediments. Extraction of metals from the oxidized sediments by the gut juices was mainly attributed to metal redistribution from AVS to other geochemical phases. The gut juices were the most effective solvent or extractant than the simple electrolyte solution [I (NaNO(3)) = 0.01 M] and the natural overlying water. Cd was more easily extracted from the oxidized sediments than Zn that tended to have a stronger binding affinity with Fe-Mn oxide, clay and organic matter. The application of partial removal techniques in metal extraction experiments further demonstrated the differential controls of various sediment geochemical phases in affecting metal bioavailability, with the order of TOC > Fe-Mn oxides > carbonate.  相似文献   

18.
《Chemosphere》1986,15(3):353-372
Contents of organic and inorganic mercury in food chain specimens, as well as sedimentation in two natural Finnish lakes and three impounded reservoirs, were studied. The proportion of organic mercury of total mercury varied in individual specimens from 32.7 to 100 %. Sedimentation (settleable solid) with very high contents of organic matter had ratios of organic to total mercury ranging from 2.4 to 87.3 %. These variations were similar in each of five water ecosystems studied. Benthic invertebrates had higher ratios of organic to total mercury than reported earlier. Total mercury concentrations in fish, zoobenthos and zooplankton of young impounded reservoirs were significantly higher than those of natural lakes. To explain this it is suggested that humic materials transfer mercury to the water and thence into the food chain.  相似文献   

19.
The aim of the present work was to systematically study the effect of low concentrations of dissolved organic matter (DOM) on the bioconcentration of organic contaminants, in order to show whether the phenomenon of enhanced bioconcentration factors (BCFs), that has been reported in the literature, is generally found at low levels of DOM or if BCF enhancements are more likely due to a random scatter in the experimental data. The first part of the study tested the hypothesis that low levels of DOM affect the uptake kinetics of organic contaminants, leading to transient enhancements of BCFs, relative to DOM-free controls, which could have been reported as BCF enhancements in short-term studies. We found that the presence of low concentrations of two different types of DOM consistently decreased the bioconcentration of benzo[a]pyrene (BaP) in the water flea Daphnia magna at all exposure times (1-24 h), and that no transient BCF enhancements occurred. The second part of the study systematically investigated if low concentrations of DOM from a wide range of different aquatic systems can cause enhancements in the bioconcentration of organic contaminants. Water fleas were exposed to combinations of four different organic contaminants (BaP, tetrachlorobiphenyl, pentachlorophenol and naphthalene) with low concentrations of 12 different types of DOM that had been collected from various regions throughout Europe. In several of the DOM treatments, we found mean BCFs being higher than mean BCFs in the controls (especially for naphthalene). This shows that the experimental setup used in this study (and similarly in previous studies) can produce seeming BCF enhancements at low concentrations of DOM. However, statistical analyses showed that treatment means were not significantly different from control means. Thus, this systematic study suggests that the BCF enhancements that have been reported in the literature are more likely the result of random, experimental variations than the result of a systematic enhancement of bioconcentration.  相似文献   

20.
Control of hazardous organic micropollutants is a challenging water quality issue. Dissolved humic organic matter (DOM) isolated from oxyhumolite coal mined in Bohemia was investigated as a complexation agent to remove polycyclic aromatic hydrocarbons (PAHs) and functionalized phenols from water by a two-stage process involving complexation and flocculation. After the formation of humic-contaminant complexes, ferric salts were added resulting in the precipitation and flocculation of the DOM and the associated pollutants. Flocculation experiments with ferric ion coagulants indicated that precipitation of oxyhumolite DOM together with the complexed contaminants occurred at lower ferric ion concentrations than with the reference DOM in acidic environments (pH approximately 3.5). The complexation-flocculation removal rates for non-reactive PAHs characterized by small localization energies of pi-electrons correlated well with the complexation constants. On the other hand, the combined complexation-flocculation removal rates for activated PAHs including trans-stilbene, anthracene and 9-methyl anthracene, as well as functionalized polar phenols, were higher than predicted from the complexation coefficients. Methodological studies revealed for the first time that the ferric ion coagulant contributed to enhanced removal rates, most probably due to ferric ion-catalyzed pollutant degradation resulting in oxidized products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号