首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research a gas–liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas–liquid fluidized bed reactor was running at 280–320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47–0.85 Nm3 kg?1 for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas–liquid fluidized bed reactor for dechlorination.  相似文献   

2.
Biowastes are becoming potential feedstocks for direct utilization or conversion to solid, liquid and gaseous fuels via various thermochemical routes. In this regard, jute dust which is a major agro-industrial waste in jute mills was pyrolysed in a fixed-bed reactor with an aim to study the product distribution and their characterization and to identify the optimum condition for bio-oil yield. The investigated process variables were temperature (400–700 °C), heating rate (10 and 40 °C/min) and nitrogen gas flow rate (50–250 ml/min). The yield of bio-oil is found to be maximum at 500 °C with a heating rate of 40 °C/min. However, further increase in temperature leads to decrease in bio-oil yield. Chemical compositions of the bio-oils were investigated using chromatographic and spectroscopic techniques such as 1H NMR, FTIR and GC–MS. The heating value of the bio-oil is 26.71 MJ/kg. The study shows that jute dust have potential for conversion to bio-oil through the process of pyrolysis to supplement the petro-derived liquid fuel for heating and transportation applications after upgrading. The biochar produced as a co-product of jute dust pyrolysis can be a potential soil amendment with multiple benefits including increased soil fertility and C-sequestration.  相似文献   

3.
Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.  相似文献   

4.
Degradation of a model polymer mixture (PVC/PS/PE) and a waste polymer mixture in the presence of HCl fixators (Red Mud, precipitated CaCO3 and dolamite) was studied using thermal gravimetric analysis (TGA) and a cycled-spheres-reactor. The experiments in cycled-spheres reactor model were performed by stepwise pyrolysis. Liquid products and HCl from each step were collected separately. For the model polymer mixture, the precipitated CaCO3 showed the best effect on the fixation of evolved HCl and the reduction of chlorine content in the liquid products whereas RM yielded the best result for the waste polymer mixture. In addition, using HCl fixator also affected the degradation of both types of polymer mixture, leading to the formation of more gaseous and less residue.  相似文献   

5.
Cellulose/polyethylene mixture (3:1 w/w) and Tetra Pak wastes with and without metal chloride (ZnCl2, AlCl3, CuCl2, FeCl3) addition were subjected to a fast pyrolysis process at 350–500 °C and heating rate 100 °C/s to evaluate the possibility of liquid product formation with a high yield. The addition of zinc, aluminum, iron and copper chlorides has influenced the range of samples decomposition as well as the chemical composition of resulting pyrolytic oils. It was found that formation of levoglucosan, the main product of cellulose thermal decomposition, and phenol and its derivatives decreased in a presence of metal chlorides. Non-catalytic fast pyrolysis of polyethylene leads to the formation of solid long chain hydrocarbons, whereas the addition of metal chlorides promotes the formation of more liquid hydrocarbons.  相似文献   

6.
Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H2, C1–C4 hydrocarbons, CO2, CO and H2S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.  相似文献   

7.
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 ± 100 °C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl2. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 °C, 10 and 30 min and 3.4 and 4.6 m s−1. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu.In the pellet, three major reactions occur: formation of HCl and Cl2 from CaCl2; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl2 out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.  相似文献   

8.
The chemical structure of liquid products of the pinewood sawdust (W) co-pyrolysis with polystyrene (PS) and polypropylene (PP) with and without the zinc chloride as an additive was investigated. The pyrolysis process was carried out at 450 °C with the heating rate of 5 °C/min. The yield of liquid products of pyrolysis was in the range of 37–91 wt% and their form was liquid or semi-solid depending on the composition of the wood/polymer blend. The zinc chloride addition to wood/polymer blends has influenced the range of samples decomposition as well as the chemical structure of resulted bio-oils. All bio-oils from wood/polypropylene blends were two-phase (liquid and solid). Contrarily, all bio-oils obtained from biopolymer/polypropylene blends with zinc chloride added were yellow liquids. All analyses proved that the structure and the quality of bio-oil strongly depend on both the composition of the blend and the presence of ZnCl2 as an additive. The FT-IR analyses of oils showed that oxygen-containing groups and hydrocarbons content highly depend on the composition of biomass/synthetic polymer mixture. The fractionation of bio-oils by column chromatography with four different solvents was followed by GC–MS analysis. Results confirmed the significant removal and/or transformation of oxygen-containing organic compounds due to the zinc chloride presence during pyrolysis process.  相似文献   

9.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

10.
利用热解及钙盐沉淀法对农药含钾废渣进行处理,制得高纯度的KCl.通过管式炉反应器对农药含钾废渣中有机物的去除进行了研究,探讨了升温速率、热解终温、终温保持时间及空气流量对热解过程的影响,并对钙盐沉淀法除氟过程的溶液pH及m(Ca2+)∶m(F-)进行了确定.实验结果表明:当升温速率为20℃/min、热解终温为600℃、终温保持时间为90 min、空气流量为3.0m3/min时,废渣中的有机物完全分解;钙盐沉淀法除氟的最佳条件为溶液pH 8,m(Ca2+)∶m(F-)=3.0,氟离子的去除率达到98%;最终得到KCl的产率为70.6%,产品纯度为98.2%,符合国家Ⅰ级优等品标准.  相似文献   

11.
In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more valuable fuel gas. The operating temperatures for the pyrolysis and gasification were between 700° and 1000°C. The experimental parameters were the operating temperature, catalyst type, basic promoter type, and steam injection amount. Solid fuel samples (5 g) were fed into a semibatch-type quartz tube reactor when the reactor reached the designated temperature. The synthesis gas was analyzed by gas chromatography. The use of low-quality coal as fuel in co-pyrolysis with RPF was explored. For the co-pyrolysis of RPF and low-quality coal, the effectiveness of the catalysts for fuel gas production followed the order Mg > NiO > Ni. In catalytic gasification of RPF, the addition of Al2O3 seemed to reduce the activity of the corresponding catalysts Ni and Mg. The maximum fuel gas yield (92.6%) was attained when Mg/Fe2O3 was used in steam gasification at 1000°C.  相似文献   

12.
The pyrolysis and co-pyrolysis behaviors of polyethylene (PE), polystyrene (PS) and polyvinyl chloride (PVC) under N2 atmosphere were analyzed by Thermal gravimetric/Fourier transform infrared (TG/FTIR). The volatile products were analyzed to investigate the interaction of the plastic blends during the thermal decomposition process. The TGA results showed that the thermal stability increased followed by PVC, PS and PE. The pyrolysis process of PE was enhanced when mixed with PS. However, PS was postponed when mixed with PVC. As for PE and PVC, mutual block was happened when mixed together. The FTIR results showed that the free radical of the decomposition could combine into a stable compound. When PE mixed with PVC or PS, large amount of unsaturated hydrocarbon groups existed in products while the content of alkynes was decreased. The methyl (CH3) and methylene (CH2) bonds were disappeared while PVC mixed with PE.  相似文献   

13.
A system to turn a potentially harmful stream of solid waste into a set of substreams with either commercial value or highly concentrated residual streams is presented. The waste which is considered is metal impregnated (in particular Chromated Copper Arsenate (CCA) treated) wood waste and timber, such as telephone poles, railway sleepers, timber from landscape and cooling towers, wooden silos, hop-poles, cable drums and wooden playground equipment. These waste streams sum up to several 100,000 tons of material per year currently to be dumped in every major country of the European Community (EC). Technologies need to be developed to reduce this CCA treated wood waste, such that all of the metals are contained in a marketable product stream, and the pyrolysis gases and/or pyrolysis liquid are used to their maximum potential with respect to energy recuperation. Pyrolysing the CCA treated wood waste may be a good solution to the growing disposal problem since low temperatures and no oxidising agents are used, which result in lower loss of metals compared to combustion. An experimental labscale pyrolysis system has been developed to study the influence of the pyrolysis temperature and the duration of the pyrolysis process on the release of metals and the mass reduction. The macrodistribution and microdistribution of the metals in the solid pyrolysis residue is studied using Inductively Coupled Plasma Mass Spectrometry (ICP–MS) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Analysis (SEM–EDXA). Furthermore, a complete mass balance is calculated over the pyrolysis system. Based on these results a semi-industrial pyrolysis system (pilot plant scale) has been developed consisting of three stages: grinding, packed bed pyrolysis and metal separation. Special types of equipment have been developed to carry out the three stages. A new grinding system has been developed, based on a crushing mechanism rather than a cutting mechanism. The crushed wood is introduced by means of a screw feeding system into a reaction column. In this pyrolysis reactor the wood is heated by subjecting it to a flow of hot gases. This causes an adiabatic pyrolysis, which results in volatilisation of the volatile compounds whereas the mineral compounds (containing the metals) remain entrapped in a coal-type residue which is very rich in carbon. The condensable compounds in the pyrolysis gas condense while leaving the reaction zone due to the inverse temperature gradient. The pyrolysis gas leaving the reactor is used as fuel for the hot gas generator. The charcoal which is extracted at the bottom of the reactor, is cooled, compressed, removed and stored, ready to feed the subsequent stage. A specially developed grinder is used to remove the metal particles from the charcoal and the separation between metal and charcoal particles is accomplished in a pneumatic centrifuge as a result of the difference in density. Using this system the ultimate waste is less than 3% of the initial wood mass. Results obtained with a semi-industrial scale prototype confirm the effectiveness of the process.  相似文献   

14.
This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.  相似文献   

15.
Kinetics of thermal de-chlorination of PVC under pyrolytic conditions   总被引:1,自引:0,他引:1  
Although PVC-containing wastes are an important potential source of energy they are frequently disposed in landfill. In thermal treatment processes such as pyrolysis and gasification, the presence of poly(vinyl chloride) (PVC), a compound with 56.7% of chlorine, may cause problems concerned with environmental protection, as consequence of the formation of hydrochloric acid, chlorine gas and dioxins, as well as corrosion phenomena of the reactor/equipment materials. Thus, a possible solution may involve a previous removal of the chlorine from PVC containing waste through a pyrolysis process at low temperatures before the material being submitted to a subsequent thermal treatment, for energetic valorization. In this work, a kinetic model for the thermal decomposition of PVC has been developed, in view of its de-chlorination. DTA/TGA testing at different temperatures indicated a first order reaction and an activation energy of 133,800J/mol. An almost completed de-chlorination reaction was obtained at 340°C under an inert atmosphere. The resulted material is a C(n)H(n) type polymer with potential to be used in an energy recovery process. Validation test performed at laboratory scale indicate that the temperature of 340°C enables the removal of ~99.9% of the chlorine present in PVC. The chloride can be fixed in the form of an aqueous solution of HCl or calcium chloride, driving to an alternative full process with environmental benefits and reduction of the costs associated to the PCV - containing materials/wastes management.  相似文献   

16.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

17.
废印制线路板真空热解产物分析   总被引:1,自引:0,他引:1  
在自行设计的间歇式固定床真空热解装置中热解废印制线路板(PCB),对热解产物进行了分析.在热解温度为550 ℃、热解压力为20 kPa、恒温时间为60 min的条件下,得到的热解产物质量分数为:热解渣70%;热解油3%~4%;不可冷凝热解气26%~27%.经气相色谱-质谱联用(GC-MS)分析,热解油经常压蒸馏后得到的低沸点液态油中含有29种化合物,主要有苯酚、对异丙基酚、3-乙基酚、4-甲酚及2-溴苯酚,还含有少量含溴化合物和含氯化合物.热解油经简单的蒸馏就可达到回收酚类化合物的目的.热解渣经风选可实现铜与黏附有碳黑的玻璃纤维的分离,其中铜质量分数约30%,黏附有碳黑的玻璃纤维质量分数约70%.  相似文献   

18.
In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.  相似文献   

19.

In this study, poly-lactic acid (PLA) and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBH) were pyrolyzed at various temperatures (300, 350, 400, 500, 600, and 700 °C) and heating rates (5, 10, 20, 30, and 40 °C min−1) using a pyrolysis–gas chromatograph/mass spectrometer (Py–GC/MS). The results revealed that the main pyrolysis products of PLA were acetaldehyde, lactide (including meso-lactide and d-, l-lactide), and oligomers. Crotonic acid and its oligomers accounted for most of the PHBH pyrolyzates. The pyrolysis temperature significantly correlated with the product distribution, but the heating rate had a small effect on the product distribution. Lactide and crotonic acid were two kinds of high-value chemicals, and their highest yields were obtained at 400 and 600 °C with 29.7 and 72.6 area %, respectively. Secondary reactions could not be neglected at 700 °C, and acetaldehyde and crotonic acid decreased to 65.0 and 69.6 area %, respectively. These results imply that pyrolyzate selectivity can be controlled by temperature management during pyrolysis.

  相似文献   

20.
Pyrolysis kinetics of waste PVC pipe.   总被引:16,自引:0,他引:16  
The pyrolysis kinetics of waste PVC pipe was investigated with a thermal gravimetric analysis system at heating rates of 5, 10, and 30 degrees C/min in a nitrogen atmosphere. Freeman-Carroll method was employed to evaluate kinetic parameters. Two dominant peaks were observed on derivative gravimetric curves, hypothetically suggesting a two-stage apparent reaction model. The first-stage reaction was likely to be represented by stoichiometric reaction to yield volatiles (mainly HCl) and intermediates. The second-stage reaction might be described by thermal degradation of intermediates competitively into gas, liquid, and solid by-products. Quasi-isothermal operations were introduced to verify the reaction types of the first and second reaction. The generation reaction of intermediates achieved at lower temperatures was carried out independently with their decomposition reaction at higher temperatures. The effects of additives on the pyrolysis kinetics of waste PVC pipe seem to be significant, especially on the first-stage reaction. The first-stage reaction was retarded. A merged peak at low temperatures was observed on the derivative thermogravimetry (DTG) curve instead of two peaks usually observed for that of pure PVC resin. The first peak on the DTG curve of pure PVC resin may shift more, resulting in the complete overlap of two peaks. The quantity of evolved HCl was likely to decrease because of interaction of metal components of stabilizers with either HCl or active chlorine atom or both. The final residual fraction increased as a result of pyrolysis of organic forms of additives to yield extra char. On the other hand, the second-stage reaction kinetics demonstrates a similar pattern to that of pure PVC resin, implying that the effects of additives may be less significant in comparison with that at the first-stage reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号