首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This report presents results of a review of available methods for control of environmental hazards applied to indoor air pollutants. Indoor air pollution originates from transport of ambient outdoor air contaminants into occupied spaces by natural infiltration ventilation, or by mechanical ventilation using outdoor makeup air, plus contributions from indoor emission sources. When air exchange with the external ambient environment is reduced to conserve energy, contributions from indoor emission sources may dominate indoor air pollutant levels. This paper identifies alternative methods available to control indoor air pollutant exposures. The performance characteristics of ventilation systems and of air cleaning devices used in mixed modes for ventilation of occupied spaces are described. Models for predicting effectiveness of several alternative modes are reviewed, with field trial validation results cited where available. Results of previous confined-space studies are briefly reviewed as points of departure for consideration of necessary air quality, ventilation, and air cleaning. Understanding of indoor air contaminant generation and controls is aided by examination of earlier studies of indoor air quality, using modern perspectives on occupational environmental health and hygiene.  相似文献   

2.
Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300 nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.  相似文献   

3.
There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health.We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination.Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical ventilation with heat recovery (MVHR) and air filtration, where such solution is feasible and when the system is properly installed, operated and maintained. Groups at high risk of these adverse health effects include the elderly (especially those living on their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socioeconomically deprived.A better understanding of how current and emerging building infrastructure design, construction, and materials may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate ventilation, need to be promoted.  相似文献   

4.
In recent years, scientist have come to realize that contaminated air inside buildings is a major route of human exposure to certain air pollutants. While scientific interest in the problem continues to grow, efforts to measure indoor pollution concentrations, define exposure levels, and estimate health risks remain in their infancy. Within this arena, policymakers must deal with the question of how best to protect public health and safety in the face of incomplete and often contradictory information. In the past, official response to environmental pollution has traditionally taken the form of “control by regulation.” However, creation of a regulatory framework for indoor air quality poses special policy issues that suggest the need to explore alternative modes of intervention. Ambient outdoor air is a public good, in the sense that enjoyment by one individual in no way detracts from use or enjoyment by others. Indoor air, on the other hand, is not a public good, especially in private residences. Costs and benefits of maintaining adequate indoor air quality are internalized within households, suggesting the possibility of a private demand for clean indoor air. Promulgation of indoor air quality standards and other regulations must confront the fact that individuals are already making decisions about their own air quality. Regulations might or might not improve these decisions. Development of effective and reasonable policy requires an appreciation of the scope for private action and consideration of the likelihood that public intervention will foster improved private choices. Among the logical and relatively inexpensive modes of intervention are public information programs, development of simple warning devices, and product testing and labeling.  相似文献   

5.
A spatial comparison of pollutant concentrations within the residential environment is undertaken, comparing pollutant concentrations from three indoor sampling locations (zones). The indoor air quality base was obtained from sampling the indoor air of 12 residential sites and two office buildings in the metropolitan Boston area. Each residential site was monitored continuously for two weeks, and data were reduced into hourly averages. Interzonal comparisons of the mean of hourly averages, 24-h averages, and daily maximum hourly concentrations were made at all sites. Linear regressions were computed between daily maximum hourly concentrations and mean 24-h concentrations of NO, NO2, and CO for kitchens to determine whether maximum hourly concentrations could be predicted from the 24-h concentration. These pollutants show interzonal statistical differences in residences with gas-fired cooking facilities but not in residences with electric cooking facilities. It was determined that, while one indoor sampling zone is not sufficient to specify indoor pollutant concentration maxima in residences having indoor sources of pollution, the daily mean of hourly pollutant concentrations obtained from one indoor zone can adequately describe the indoor environment. In addition, the maximum indoor hourly concentration for NO, NO2, and CO can be estimated for residences with all electric facilities, by using the mean 24-h concentration. The reliability of similar estimates for NO, NO2, and CO in residences with unvented gas appliances is reduced because of substantially more scatter in the paired data point, particularly at higher pollutant concentrations.  相似文献   

6.
Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10 m away from the roadway is roughly 16–21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253 nm). For ultrafine particles (< 100 nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D ~ 2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D < 2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways.  相似文献   

7.
As national trends accelerate towards the reduction of ventilation and infiltration rates in buildings, coupled with an increased use of synthetic chemicals in the indoor environment, a new phenomenon has arisen: the “sick building” syndrome. Traditional approaches to environmental health developed for the outdoor air, or for the industrial occupational setting, are inadequate to deal with this problem. It is argued that a comprehensive approach to the problem of indoor air pollution is necessary to protect public health.  相似文献   

8.
从2013年到2016年我国大气污染防治所取得的巨大成就不能用来说明2015年修订通过的《大气污染防治法》为防治大气污染发挥了巨大的作用。那些成就主要是由以《重点区域大气污染防治"十二五"规划》《大气污染防治行动计划》为标志的政府防治大气污染的行动取得的。《大气污染防治法》(2015)的加"严"修订主要表现在:罚则条款数量增加;违法行为种类增加;责任类型增多;多处设定"惩罚束";设定阶梯式处罚;创设身份罚新形式,多处设定机能罚等方面。那些加"严"修订都服务于实现"行为人不违反"这个规制目标。以往的研究成果表明,使"行为人不违反"的法律不能保证使环境达到一定的质量目标。近年我国政府环境保护举措取得成功的秘诀主要有三点,即:(1)减少绝对排放量;(2)政府负责,而不是行政相对人负责;(3)用权力推行,而不是用设惩罚"威胁"行政相使之守法的方式寻求大气污染防治目标的实现。要让大气污染防治法成为我国防治大气污染的基本依据和有效防治大气污染的保障,必须对新修订的《大气污染防治法》再行修订。新的修订应当以政府的大气污染防治行为为着力点。这样的修订主要应当考虑:建立大气质量目标制度;健全总行为控制制度;按照大气污染防治的需要明确对各级政府、地方权力机关的授权;规定政府或其职能部门的职责和相关行政权运行的约束程序。在对《大气污染防治法》实施了以"政府的大气污染防治行为"为着重点的修改之后,国家将取得法治国家建设和大气污染防治法制建设的双重收获。  相似文献   

9.
Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same conditions.  相似文献   

10.
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influencing human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic oxidation of VOCs is a cost-effective technology for VOCs removal compared with adsorption, biofiltration, or thermal catalysis. In this paper, we review the current exposure level of VOCs in various indoor environment and state of the art technology for photocatalytic oxidation of VOCs from indoor air. The concentrations and emission rates of commonly occurring VOCs in indoor air are presented. The effective catalyst systems, under UV and visible light, are discussed and the kinetics of photocatalytic oxidation is also presented.  相似文献   

11.
Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds.Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5 ng/m3 for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for < 0.8–7.6, 12.1–180.9 and 4.65–105.7 μg/dm2 for 6:2, 8:2 and 10:2 FTOHs, respectively. Emission from selected textiles revealed emission rates of up to 494 ng/h.The measured data show that a) FTOHs are present in indoor textiles (e.g. carpets), b) they are released at ambient temperatures and c) indoor air of shops selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA.  相似文献   

12.
利用2008年1月~2012年12月期间成都市市区与其周边14个城镇的逐日空气污染指数(API)数据,采用去趋势互相关分析法(DCCA分析)研究区域城市间大气污染的相关性及其随时间演变规律。结果表明:成都市区与其周边城镇大气污染的空气污染存在一定程度的相关性,并且在不同的月份,相关性会随之发生变化。这种相关性具有长期持续特征,具体表现为在一定的时间尺度上成都市区与其周边城镇大气污染的相关性随时间的变化并不遵循经典的马尔可夫过程,即不随时间呈现指数快速衰减,而是以幂律形式随时间缓慢衰减。进一步,结合不同月份间区域大气平均流场的分布特征,探讨了DCCA分析结果的科学性。研究结果说明,在特定地理环境和气象条件控制下,成都市及其周边城市之间已经存在明显的相互输送和耦合作用,成都地区大气污染已由局地性污染转变为区域性大气污染。城市间污染物输送的长期相关影响机制极有可能在特定月份加重成都市区的空气污染状况,这在成都市区及其周边城镇的规划建设中必须加以特别重视  相似文献   

13.
Dried detergent residue left in carpets after they were shampooed with underdiluted carpet shampoo caused respiratory irritation among most employees in an office building and among all staff members and most children in a day-care center. Symptoms included cough, dry throat, difficulty in breathing, nasal congestion, and headache. Eye irritation was also noted by day-care center staff members. Symptoms persisted for many weeks until the carpets were wet extracted. The major ingredient of the three shampoo products implicated in these two outbreaks and in a third similar report in sodium dodecyl sulfate, a respiratory irritant in mice. Unpublished occupational investigations suggest that soap dust exposure may be associated pulmonary function abnormalities in some exposed workers. Detergent dust is a newly recognized example of indoor air pollution and should be considered when patients or employees complain of building-specific respiratory or eye irritation.  相似文献   

14.
Air pollution is a major environmental problem in urban areas worldwide. Delhi, the capital city of India, is no exception to the universal pattern of deteriorating urban air quality with concentration of pollutants being well above the recommended WHO levels. The magnitude and urgency of the problem as a global environmental issue needs a systematic understanding of the potential causes of pollution and their contribution to air quality. In the present study, ambient air quality data (1987–2006) of SO2, NO2, SPM, and RSPM were analyzed to asses the changing air quality in the study area and to evaluate the effect of measures taken to control it. The primary data were collected from 1,583 households to examine the relationship between outdoor and indoor pollution level. Based on the data, the current study concludes that despite the implementation of different pollution-controlling measures, the pollutants, especially the particulate pollutants, were well above the standard limits set by CPCB. Integration between technological and social approach of urban planning is required to mitigate and manage urban environmental problems in sustainable manner.  相似文献   

15.
Assessment of airborne organophosphorus pesticides in houses of young children (1-6 years old) and childcare facilities was conducted following pesticide applications in an agricultural community in Japan. Trichlorfon and fenitrothion, applied in two separate periods, were frequently detected from outdoor and indoor air. Dichlorvos, the primary degradation product of trichlorfon, was also detected after the application of trichlorfon. Both the outdoors and indoor concentration of applied pesticide were shown to increase with decreasing distance from the pesticide-applied farm. Indoor concentration of these pesticides significantly correlated with outdoor concentration (p=0.001 for trichlorfon and p=0.001 for fenitrothion), indicating infiltration of applied pesticide inside. Ratio of indoor to outdoor concentration (I/O ratio) of fenitrothion was higher for houses with windows open during the application than those with closed windows (median value: 0.74 vs. 0.16, p=0.003). However, a similar trend was not observed for trichlorfon as well as dichlorvos in the first period. Dichlorvos was found to have a higher I/O ratio than trichlorfon during the period, and clear correlation between indoor concentrations of dichlorvos and those of trichlorfon suggested increased decomposition of trichlorfon in the indoor environment. Daily inhalation exposure estimated by using the fixed measurement data and time-activity questionnaire ranged from 0 to 35 ng/kg/day for trichlorfon, from 0 to 26 ng/kg/day for dichlorvos, and from 0 to 44 ng/kg/day for fenitrothion. Median inhalation exposure from indoor air accounted for 74%, 86.3%, and 45% of the daily inhalation exposure, respectively. For kindergarteners or nursery school children, inhalation exposure at childcare facilities was comparable with or more than that at home, indicating that pollution level at childcare facilities had potential of high impact on children's exposure. Estimated daily inhalation exposures were inversely correlated to the proximity of their activity location to the pesticide-applied farm.  相似文献   

16.
Contrasting effects of the dilution of indoor generated pollutants and the energy efficiency of heating and ventilating air conditioning systems (HVAC) for indoor air quality (IAQ) and thermal comfort were studied for 10 Kuwaiti residences. The levels of volatile organic compounds (VOCs) and the calculated cooling load of the HVAC systems were used as indicators for the IAQ and for the energy consumption, respectively. Air exchange rates and VOCs levels (both indoor and outdoor) were measured. It was found that the outdoor VOC concentrations were always less than the indoor values. Therefore reduction of indoor VOC levels can be accomplished either by increasing the ratio of the makeup air to the recirculation air of the HVAC system or by increasing the infiltration airflow rate through openings. A single compartment IAQ model, modified by the authors, was used to test for the variation in the above two dilution modes and to test the performance sensitivity. Hence, the optimum parameters in terms of IAQ and energy consumption were determined. The results indicated that it was necessary to increase the ratio of the makeup air to the recirculation air from its typical design value of 0.5 to a range of 0.7-1.3 in order to reduce indoor VOC to acceptable levels.  相似文献   

17.
Based on data from a Qualtrics panel, this study examines Chinese citizens’ motivations for information seeking about air pollution. Results from structural equation modelling indicate that information insufficiency, negative affect, attitudes toward seeking, and perceived information gathering capacity are positively related to information seeking. Informational subjective norms, however, were not significantly related to information seeking. Further, participants with more knowledge and higher risk perception were more likely to desire more information about air pollution. These results suggest that communication campaigns should highlight individuals’ personal risks and self-efficacy to encourage greater information seeking about air pollution among Chinese citizens. Emotional appeal may serve as an effective strategy as well.  相似文献   

18.
Indoor air quality was examined for some gaseous pollutants and particulate matters. In a public library, the indoor/outdoor ratio of gaseous pollutants were found to be dependent on their reactivity, also on the outdoor concentrations and weather conditions. This ratio was 0.6 for SO2,and 1.3 for CO. The indoor/outdoor ratio of carbon monoxide was found to increase at the higher floors of the same building. Concentrations of indoor particulates was found to be influenced by the outdoor concentrations and the particle size. Analysis indicated that indoor suspended dust contained a significant high concentration of lead as compared with outdoor values. Indoor sources were found to pollute the premises of fossil-fuel equipped homes, thus having carbon monoxide concentrations more than the recognized threshold limit value for industry.  相似文献   

19.
We have investigated the filtering effects of three types of air control systems of enclosed structures on viable particles in the ambient air. Aspergillus fumigatus and other thermophilic organisms were used as monitors for viable particles. The indoor concentrations of viable particles were found to be affected by building design and the use of conventional mechanical air systems. Viable particles of approximately 4.0 μm and greater in aerodynamic diameter were filtered from the air while respirable size particles less than 4.0 μm were not filtered as well. There was evidence of growth of viable particles within the mechanical air systems. Conventional air control systems may not be adequate for the control of viable particle contamination of the indoor environment without modifications and proper maintenance.  相似文献   

20.
Methods, standards, and regulations that are aimed to reduce indoor air pollution from building materials are critically reviewed. These are classified as content control and emission control. Methods and standards can be found in both of these two classes. In the regulation domain, only content control is enforced in some countries and some regions, and asbestos is the only building material that is banned for building use. The controlled pollutants include heavy metals, radon, formaldehyde, and volatile organic compounds (VOCs). Emission rate control based upon environment chamber testing is very much in the nature of voluntary product labeling and ranking, and this mainly targets formaldehyde and VOC emissions. It is suggested that radon emission from building materials should be subject to similar emission rate control. A comprehensive set criteria and credit-awarding scheme that encourages the use of low-emission building material is synthesized, and how this scheme can be practiced in building design is proposed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号