首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
UASB反应器对芳香族化合物反硝化降解特性研究   总被引:1,自引:0,他引:1  
以苯、联苯和萘为模型化合物,研究了上流式厌氧污泥床反应器(UASB)在反硝化连续流运行条件下对含上述污染物废水的处理效果,并以葡萄糖为补充碳源,考察了COD/NO-3-N(简称C/N)比对有机物反硝化降解特性的影响。研究结果表明,当进水COD浓度约为900 mg/L,苯、联苯和萘总浓度约为60 mg/L,NO-3-N为20~60 mg/L时,UASB反应器能够在硝酸盐还原条件下稳定去除废水中有机污染物,其中COD平均去除率可达到85%,苯、萘和联苯平均去除率分别为90%、81%和71%。3种芳香烃反硝化降解速率顺序为苯>萘>联苯。 C/N比对苯的降解影响不十分显著,在C/N为5~30范围内,苯的去除率稳定在87%~92%;萘和联苯去除率受C/N影响较大,在C/N比为15时萘和联苯的去除率均达到最大,分别为82%和77%。  相似文献   

2.
低C/N比水产养殖废水生物脱氮实验研究   总被引:5,自引:1,他引:4  
随着短程硝化-反硝化理论研究的发展,在低C/N比条件下,实现污水的生物脱氮处理已成为可能。为此,设计了水产养殖用水的三级生物膜短程硝化-反硝化处理工艺,并对该工艺在去除模拟水产养殖废水主要污染物的作用进行了初步研究。研究结果表明,在进水pH值7.5~8.5,温度为28~32℃,溶解氧为0.5~1 mg/L,游离氨浓度为5~10 mg/L的条件下,模拟废水的COD、NH4+-N和TN的平均去除率分别达到94.4%、91.6%和70.1%;并且低C/N比对出水氨氮NH4+-N的去除率影响不大,NO2--N的平均浓度控制在5.2 mg/L以下,低于鱼类的耐受浓度。表明该短程硝化-反硝化工艺设计,可用于低C/N比水产养殖废水主要污染物的生物处理,尤其是可消除NO2--N对水产养殖的潜在威胁,基本达到养鱼回用标准。  相似文献   

3.
采用两级UASB与好氧组合工艺处理早期城市生活垃圾渗滤液。系统出水按不同比例回流到一级UASB中进行反硝化,同时进行产甲烷反应,有机物在二级UASB中被进一步降解,好氧池完成剩余有机物的去除和氨氮的硝化。启动阶段通过对原渗滤液不同比例的稀释,分5次逐步提高进水浓度,启动结束时完成了对原渗滤液的高效处理。在进水COD浓度从3000mg/L提高到15000mg/L,氨氮浓度从250mg/L提高到1400mg/L时,最终COD去除率稳定在92%左右,氨氮去除率可达99%以上,一级UASB中反硝化率接近100%,回流比为300%时系统总氮去除率为70%~80%。  相似文献   

4.
侧沟式一体化OCO工艺中DO和C/N对同步硝化反硝化的影响   总被引:1,自引:0,他引:1  
以自配模拟生活污水为处理对象,研究了不同DO和C/N对侧沟式一体化OCO反应器同步硝化反硝化和COD降解效果的影响。实验结果表明,维持进水COD均值约为300 mg/L,TN约为40 mg/L,MLSS约为2 600 mg/L,进水流量为20 L/h时,COD去除率随着DO的增大逐步提高,当好氧区DO均值约为2.0 mg/L时,同步硝化反硝化效果最好,TN去除率达到了80%以上;维持好氧区DO均值约为2.0 mg/L,MLSS约为2 600 mg/L,进水流量为20 L/h时,不同C/N对COD去除率影响不大,当进水C/N约为8时,同时硝化反硝化效果最好,TN去除率均值达到了82%。  相似文献   

5.
SBR用于焦化废水生物处理的试验研究   总被引:3,自引:0,他引:3  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明,焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(SND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3N的去除效率在95.8%~99.2%,COD的去除率在85.3%~92.6%。由于出水中NO2N的积累,NO2N对COD浓度贡献值得关注。  相似文献   

6.
SBR用于焦化废水生物处理的试验研究   总被引:2,自引:0,他引:2  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明,焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(SND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3-N的去除效率在95.8%~99.2%,COD的去除率在85.3%~92.6%。由于出水中NO2-N的积累,NO2-N对COD浓度贡献值得关注。  相似文献   

7.
研究了投加硝态氮NO3^--N对缺氧反硝化-好氧和缺氧水解-好氧串联系统处理印染PVA退浆废水的效果。结果表明,缺氧反硝化投加硝态氮NO3^--N比缺氧水解-好氧对CODCr的去除率在缺氧池、好氧池中均提高了30%,缺氧反硝化-好氧工艺二沉池出水经生物碳处理后,CODCr,的去除率达90%。C:N:P的比例合适与否是处理印染PVA退浆废水成功的关键。  相似文献   

8.
针对餐厨废水的水质特点,提出低C/N下的短程硝化反硝化餐厨废水处理组合工艺。通过控制微氧区、好氧区DO分别为0.5 mg/L和2.5 mg/L;硝化液,微氧区混合液和污泥回流比分别为200%、100%和100%,可以实现NO-2-N累积率达到90%以上,COD、氨氮平均去除率为73.42%和98.57%。较低的C/N使得反硝化效果不佳,对反应器进水补充适量的甲醇作为碳源,在COD/TN约为4的情况下,以NO-2-N为主的反硝化可以使反应器对TN的去除率达到94%,出水各项指标符合相关排放标准,实现了餐厨废水高效和经济的生物脱氮。  相似文献   

9.
采用移动床生物膜反应器(MBBR)处理配制模拟废水,实验结果表明,水力停留时间为6h、悬浮填料填充率为40%时,在不同C/N/P比率条件下,MBBR对COD、NH4+-N和TN去除性能好且稳定,平均去除率分别达到90%、94.8%和62.39%以上,而TP的去除率受C/N/P值影响较大,当C/N/P的比值为100/10/1.8时,平均去除率达到58.03%。一定的溶解氧(DO)质量浓度能保证反应器中COD、NH4-N高效稳定的去除,同时是TN和TP同时去除的重要影响因素,在MBBR中最佳DO值约为3mg/L。由于附着在悬浮填料生物膜内部存在厌氧、缺氧微环境条件,在反应器中存在少量的反硝化聚磷菌。  相似文献   

10.
张衍  郑炜  刘锐  李伟  李荧  陈吕军 《环境工程学报》2012,6(12):4355-4360
对化学合成橡胶碱洗废水进行了有机组分和可生化性分析,废水主要含有氯甲烷、六甲苯、异丁醇、甲醇等污染物质,生化降解实验中废水TOC可在6d内从60.9mg/L下降至0.0mg/L,可生化降解性好,适于生化处理。选择混凝.生物接触氧化组合工艺对废水进行处理,采用优化条件(pH=8、PAC=40mg/L、PAM=8mg/L)进行混凝,碱洗废水COD去除率为9.95%~72.94%(平均31.51%);混凝后的碱洗废水与冲洗废水1:5混合进行接触氧化处理,在HRT为36h的情况下,COD去除率为65.6%-72.6%(平均70.4%),出水COD为134~331mg/L,满足企业废水排放市政管网的要求;同时,实验发现COD去除率与COD容积负荷存在指数函数变化关系。  相似文献   

11.
采用两级UASB与好氧组合工艺处理早期城市生活垃圾渗滤液.系统出水按不同比例回流到一级UASB中进行反硝化,同时进行产甲烷反应,有机物在二级UASB中被进一步降解,好氧池完成剩余有机物的去除和氨氮的硝化.启动阶段通过对原渗滤液不同比例的稀释,分5次逐步提高进水浓度,启动结束时完成了对原渗滤液的高效处理.在进水COD浓度从3000 mg/L提高到15000 mg/L,氨氮浓度从250 mg/L提高到1400 mg/L时,最终COD去除率稳定在92%左右,氨氮去除率可达99%以上,一级UASB中反硝化率接近100%,回流比为300%时系统总氮去除率为70%~80%.  相似文献   

12.
溶解氧和有机碳源对同步硝化反硝化的影响   总被引:14,自引:5,他引:9  
利用SBR反应器,探讨了溶解氧(DO)和有机碳源(COD)对同步硝化好氧反硝化的影响.结果表明,DO范围在0.5~0.6 mg/L时最适合于同步硝化好氧反硝化脱氮.在同步硝化反硝化过程中出现了亚硝酸盐氮的积累,推断经由短程硝化反硝化途径.总氮的去除率随着COD/N(碳氮比)的增加而增加,当COD/N为10.05时,总氮去除率最高可达70.39%.继续增加碳氮比时,总氮去除率增加不多,并且还会导致硝化作用不完全.当存在足够的易降解有机碳源时,能发生完全的好氧反硝化作用.  相似文献   

13.
新型MBR工艺对垃圾渗滤液TN去除的研究   总被引:2,自引:0,他引:2  
实验采用A^2/O^3-UF组成的MBR工艺,进水采用广州兴丰垃圾填埋场的垃圾渗滤液。在进水COD为3590~32600mg/L、NH3-N为720~2300mg/L的条件下,NH3^-N容积负荷为0.21kg/(d·m^3)时,该工艺对于NH3^-N仍有85%的去除率;而NO3^-N的去除率受到碳源的影响,由于渗滤液C/N偏低,因此需人为投加碳源,以保证反硝化能彻底进行。在碳源充足的条件下,出水NO3^-N亦可控制在5mg/L左右。结果证明,MBR工艺对于TN有良好的去除效果。  相似文献   

14.
同步硝化反硝化生物脱氮技术研究   总被引:5,自引:0,他引:5  
讨论了影响同步硝化反硝化反应的各参数,并进行了单因素实验与正交实验,获得了同步硝化反硝化生物脱氮工艺运行的最佳条件:DO浓度控制在0.5~2mg/L,COD浓度为600~800mg/L,混合液悬浮固体(MLSS)为5000mg/L,pH值在8.0左右,反应时间为6h。在此条件下,氨氮及COD的去除率都较高,分别达85%和95%,总氮去除率为68.5%。  相似文献   

15.
采用ASBR厌氧氨氧化(ANAMMOX)反应器,考察了不同C/N(NH+4-N)比时厌氧氨氧化与反硝化协同脱氮性能表现,并与无机环境下反应器的脱氮性能相比较。研究结果表明,C/N比决定了ANAMMOX/反硝化耦合反应的发展方向。当C/N0.33时,ANAMMOX为主导反应;当C/N=0.67时,耦合反应的效果最佳,NH_4~+-N和NO_2~--N的去除率分别为92%、95%、COD去除率大于96%,实现了氨氮及COD的同时去除;当C/N=1.33时,反硝化反应逐渐占据优势;当C/N2.96时,反硝化作用成为主导反应,厌氧氨氧化反应受到明显抑制,氨氮去除率下降。采取批次实验方法研究了厌氧氨氧化与反硝化协同反应的动力学特性。用基质抑制动力学Haldane模型拟合不同基质浓度下的厌氧氨氧化活性,得到氨氮最大比增长速率为0.09 kg/(kg·d)(以VSS计),半饱和常数为8.4 mg/L、半抑制常数为1 198.2 mg/L;亚硝态氮最大比增长速率为0.27 kg/(kg·d)(以VSS计),半饱和常数为10.2 mg/L、半抑制常数为300.1 mg/L。采用Monod模型和Haldane模型分别拟合不同COD浓度和亚硝酸盐浓度下的反硝化性能,得到反硝化亚硝态氮最大比增长速率为0.2 kg/(kg VSS·d),半饱和常数为17.4 mg/L、半抑制常数为128.4 mg/L,COD半饱和常数为83.3 mg/L。  相似文献   

16.
采用微氧颗粒污泥膜生物反应器处理生活污水,进行同时去除有机物和氮的研究。结果表明,膜出水COD不受水力停留时间变化的影响一直稳定在较低值,为15~35mg/L,去除率在94%以上。氮通过发生同时硝化反硝化反应而去除。在水力停留时间为16h以上时,系统总氮去除率为65%~92%,平均去除率为77%。  相似文献   

17.
对螺旋升流式反应器脱氮除磷及去除COD的运行效果进行了研究,该系统连续稳定运行6个月的结果表明.能保证出水平均质量浓度TN小于10mg/L,TP小于0.50mg/L,COD小于31mg/L,对TN、TP和COD的去除率分别达86%、96%和94%以上。并且对SUFR系统的污泥性能进行了分析:(1)螺旋升流特征使本反应系统中的污泥易于颗粒化;(2)SUFR系统中的微生物种群具有多样性;(3)污泥在好氧反应器中表现出了同步硝化反硝化功能;(4)污泥在缺氧反应器表现出了反硝化吸磷现象。  相似文献   

18.
通过多相组合膜生物反应器对精细化工废水的处理试验,分析了COD、NH3-N、TP指标的去除效果。在装置进水浓度COD为600—900mg/L、NH3-N20~40mg/L、TP2.0~6.0mg/L时,出水COD为80—120mg/L,NH3-N未检出,TP为0.5—2.0mg/L,COD的去除率稳定在87%左右,NH3-N的去除率大于99%,TP的去除率稳定在75%左右。研究表明,多相组合膜生物反应器非常适合精细化工废水的处理。  相似文献   

19.
铁炭内电解—厌氧—好氧工艺处理阿维菌素废水的试验研究   总被引:10,自引:0,他引:10  
血清瓶毒性试验表明,AVM对厌氧消化产生强烈的抑制作用,AVM废水经铁炭内电解参处理后,COD和AVM的去除率分别达到19.5%和68.5%,可大大降低废水的毒性,预处理出水再经UASB+生物接触氧化反应器进一步处理,当生化系统进水COD为6000-6500mg/L时,出水COD为250-280mg/L,总COD去除率达到95.6%,出水达到生物制药行业排放标准。  相似文献   

20.
厌氧折流板反应器处理硝基苯废水的研究   总被引:4,自引:0,他引:4  
采用厌氧折流板反应器(ASR)中温处理含硝基苯废水,研究了工艺条件和硝基苯的降解特点.试验结果表明:在进水COD浓度为2088mg/L,硝基苯浓度为16.8mg/L,反应温度为35℃,停留时间为24h条件下,ABR能有效处理硝基苯废水,COD去除率为86.4%,硝基苯去除率为91.1%;在厌氧条件下,硝基苯降解为苯胺,但苯胺很难再进一步分解;硝基苯的去除历程推断为先吸附后分解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号