首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The soil solid phase components most responsible for P sorption in Florida soils are Fe and Al oxides. Thus, we hypothesized that land application of biosolids would significantly increase a soil's P retention by increasing its content of P-sorbing solids, especially when biosolids with high Fe and Al concentrations are applied to soils that sorb P poorly. Biosolids effects were quantified by a series of single-point isotherms on soils from two field studies sampled for up to 4 yr after initial biosolids application. Biosolids additions had little effect on P retention in a soil with abundant oxalate-extractable Fe and Al and a correspondingly large native P-sorbing capacity. However, biosolids significantly increased P retention in a soil with low oxalate-extractable Fe and Al content and low native P-sorbing capacity. Biosolids effects on P retention lasted 1 to 3 yr after application, depending on biosolids source and rate of application, and generally mimicked persistence of increased extractable Fe and Al concentrations in the poorly P-sorbing soil. Disappearance of added Fe and Al (and, hence, P retention capacity) from the surface horizons over time was relatively rapid, perhaps due to abundant organic acid production associated with biosolids degradation. Phosphorus in biosolids containing (or tailored to contain) abundant Fe and/or Al can be expected to behave as a slowly available P source, and to be less subject to leaching losses than completely soluble P sources.  相似文献   

2.
Water treatment residuals (WTR) can reduce runoff P loss and surface co-application of P-sources and WTR is a practical way of land applying the residuals. In a rainfall simulation study, we evaluated the effects of surface co-applied P-sources and an Al-WTR on runoff and leacheate bioavailable P (BAP) losses from a Florida sand. Four P-sources, namely poultry manure, Boca Raton biosolids (high water-soluble P), Pompano biosolids (moderate water-soluble P), and triple super phosphate (TSP) were surface applied at 56 and 224kgPha(-1) (by weight) to represent low and high soil P loads typical of P- and N-based amendments rates. The treatments further received surface applied WTR at 0 or 10gWTRkg(-1) soil. BAP loss masses were greater in leachate (16.4-536mg) than in runoff (0.91-46mg), but were reduced in runoff and leachate by surface applied WTR. Masses of total BAP lost in the presence of surface applied WTR were less than approximately 75% of BAP losses in the absence of WTR. Total BAP losses from each of the organic sources applied at N-based rates were not greater than P loss from TSP applied at a P-based rate. The BAP loss at the N-based rate of moderate water-soluble P-source (Pompano biosolids) was not greater than BAP losses at the P-based rates of other organic sources tested. The hazards of excess P from applying organic P-sources at N-based rates are not greater than observed at P-based rates of mineral fertilizer. Results suggest that management of the environmental P hazards associated with N-based rates of organic materials in Florida sands is possible by either applying P-sources with WTR or using a moderate water-soluble P-source.  相似文献   

3.
The application of biosolids (sewage sludge) to agricultural soils provides P in excess of crop needs when applied to meet the N needs of most agronomic crops. These overapplications can result in the buildup of P in soils to values well above those needed for optimum crop yields and also may increase risk of P losses to surface and ground waters. Because of concerns regarding the influence of P on water quality in the USA, many state and federal agencies now recommend or require P-based nutrient management plans for animal manures. Similar actions are now under consideration for the land application of biosolids. We reviewed the literature on this subject and conducted a national survey to determine if states had restrictions on P levels in biosolids-amended soils. The literature review indicates that while the current N-based approach to biosolids management does result in increases of soil P, some properties of biosolids may mitigate the environmental risk to water quality associated with land application of P in biosolids. Results of the survey showed that 24 states have regulations or guidelines that can be imposed to restrict land application of biosolids based on P. Many of these states use numerical thresholds for P in biosolids-amended soils that are based on soil test phosphorus (STP) values that are much greater than the values considered to be agronomically beneficial. We suggest there is the need for a comprehensive environmental risk assessment of biosolids P. If risk assessment suggests the need for regulation of biosolids application, we suggest regulations be based on the P Site Index (PSI), which is the method being used by most states for animal manure management.  相似文献   

4.
Incorporating applied phosphorus (P) sources can reduce P runoff losses and is a recommended best management practice. However, in soils with low P retention capacities, leaching can be a major mechanism for off-site P loss, and the P-source application method (surface or incorporation) may not significantly affect the total amount of off-site P loss. We utilized simulated rainfall protocols to investigate effects of P-source characteristics and application methods on the forms and amounts of P losses from six P sources, including five biosolids materials produced and/or marketed in Florida, and one inorganic fertilizer (triple superphosphate). A typical Florida Spodosol (Immokalee fine sand; sandy, siliceous, hyperthermic Arenic Alaquods) was used for the study, to which the P sources were each applied at a rate of 224 kg P ha(-1) (approximately the P rate associated with N-based biosolids applications). The P sources were either surface-applied to the soil or incorporated into the soil to a depth of 5 cm. Amended soils were subjected to three simulated rainfall events, at 1-d intervals. Runoff and leachate were collected after each rainfall event and analyzed for P losses in the form of soluble reactive P (SRP), total dissolved P (TDP), total P (TP), and bioavailable P (BAP) (in runoff only). Cumulative masses (runoff + leachate for the three rainfall events) of P losses from all the P sources were similar, whether the amendments were surface-applied or incorporated into the soil. The solubility of the amendment, rather than application method, largely determines the P loss potential in poorly P-sorbing Florida Spodosols.  相似文献   

5.
Biosolids land application rates are typically based on crop N requirements but can lead to soil P accumulation. The Littleton/Englewood, Colorado, wastewater treatment facility has supported biosolids beneficial-use on a dryland wheat-fallow agroecosystem site since 1982, with observable soil P concentration increases as biyearly repeated biosolids applications increased from 0, 6.7, 13, 27, to 40 Mg ha(-1). The final study year was 2003, after which P accountability, fractionation, and potential environmental risk were assessed. Between 93 and 128% of biosolids-P added was accounted for when considering conventional tillage soil displacement, grain removal, and soil adsorption. The Fe-P fraction dominated all soil surface P fractions, likely due to an increase in amorphous Fe-oxide because Fe2(SO4)3 was added at the wastewater treatment facility inflow for digester H2S reduction. The Ca-P phase dominated all soil subsurface P fractions due to calcareous soil conditions. A combination of conventional tillage, drought from 1999 to 2003, and repeated and increasing biosolids application rates may have forced soil surface microorganism dormancy, reduction, or mortality; thus, biomass P reduction was evident. Subsurface biomass P was greater than surface biomass, possibly due to protection against environmental and anthropogenic variables or to increased dissolved organic carbon inputs. Even given years of biosolids application, the soil surface had the ability to sorb additional P as determined by shaking the soil in an excessive P solution. Biosolids-application regulations based on the Colorado Phosphorus Index would not impede current site practices. Proper monitoring, management, and addition of other best management practices are needed for continued assurance that P movement off-site does not become a major issue.  相似文献   

6.
Malodor emissions limit public acceptance of using municipal biosolids as natural organic resources in agricultural production. We aimed to identify major odorants and to evaluate odor concentrations associated with land application of anaerobically digested sewage sludges (Class B) and their alkaline (lime and coal fly ash)-stabilized products (Class A). These two types of biosolids were applied at 12.6 tonnes ha(-1) (dry weight) to microplots of very fine clayey Vertisol in the Jezreel Valley, northern Israel. The volatile organic compounds (VOCs) emitted from the biosolids before and during alkaline stabilization and after incorporation into the soil were analyzed by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Odor concentrations at the plots were evaluated on site with a Nasal Ranger field olfactometer that sniffed over a defined land surface area through a static chamber. The odors emitted by anaerobically digested sewage sludges from three activated sludge water treatment plants had one characteristic chemical fingerprint. Alkaline stabilization emitted substantial odors associated with high concentrations of ammonia and release of nitrogen-containing VOCs and did not effectively reduce the potential odor annoyance. Odorous VOCs could be generated within the soil after biosolids incorporation, presumably because of anaerobic conditions within soil-biosolids aggregates. We propose that dimethyl disulfide and dimethyl trisulfide, which seem to be most related to the odor concentrations of biosolids-treated soil, be used as potential chemical markers for the odor annoyance associated with incorporation of anaerobically digested sewage sludges.  相似文献   

7.
Increasing emphasis on phosphorus (P)-based nutrient management underscores the need to understand P behavior in soils amended with biosolids and manures. Laboratory and greenhouse column studies characterized P forms and leachability of eight biosolids products, chicken manure (CM), and commercial fertilizer (triple superphosphate, TSP). Bahiagrass (Paspalum notatum Flugge) was grown for 4 mo on two acid, P-deficient Florida sands, representing both moderate (Candler series: hyperthermic, uncoated Typic Quartzipsamments) and very low (Immokalee series: sandy, siliceous, hyperthermic Arenic Alaquods) P-sorbing capacities. Amendments were applied at 56 and 224 kg P(T) ha(-1), simulating P-based and N-based nutrient loadings, respectively. Column leachate P was dominantly inorganic and lower for biosolids P sources than TSP. For Candler soil, only TSP at the high P rate exhibited P leaching statistically greater (alpha = 0.05) than control (soil-only) columns. For the high P rate and low P-sorbing Immokalee soil, TSP and CM leached 21 and 3.0% of applied P, respectively. Leachate P for six biosolids was <1.0% of applied P and not statistically different from controls. Largo biosolids, generated from a biological P removal process, exhibited significantly greater leachate P in both cake and pelletized forms (11 and 2.5% of applied P, respectively) than other biosolids. Biosolids P leaching was correlated to the phosphorus saturation index (PSI = [Pox]/[Al(ox) + Fe(ox)]) based on oxalate extraction of the pre-applied biosolids. For hiosolids with PSI < or = approximately 1.1, no appreciable leaching occurred. Only Largo cake (PSI = 1.4) and pellets (PSI = 1.3) exhibited P leaching losses statistically greater than controls. The biosolids PSI appears useful for identifying biosolids with potential to enrich drainage P when applied to low P-sorbing soils.  相似文献   

8.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

9.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

10.
Florida Spodosols are sandy, inherently low in Fe- and Al-based minerals, and sorb phosphorus (P) poorly. We evaluated runoff and leachate P losses from a typical Florida Spodosol amended with biosolids and triple superphosphate (TSP). Phosphorus losses were evaluated with traditional indoor rainfall simulations but used a double-deck box arrangement that allowed leaching and runoff to be determined simultaneously. Biosolids (Lakeland, OCUD, Milorganite, and Disney) represented contrasting values of total P, percent water-extractable P (PWEP), and percentage of solids. All P sources were surface applied at 224 kg P ha(-1), representing a soil P rate typical of N-based biosolids application. All biosolids-P sources lost less P than TSP, and leachate-P losses generally dominated. For Lakeland-amended soil, bioavailable P (BAP) was mainly lost by runoff (81% of total BAP losses). This behavior was due to surface sealing and drying after application of the slurry (31 g kg(-1) solids) material. For all other P sources, BAP losses in leachate were much greater than in runoff, representing 94% of total BAP losses for TSP, 80% for Milorganite, 72% for Disney, and 69% for OCUD treatments. Phosphorus leaching can be extreme and represents a great concern in many coarse-textured Florida Spodosols and other coastal plain soils with low P-sorption capacities. The PWEP values of P sources were significantly correlated with total P and BAP losses in runoff and leachate. The PWEP of a source can serve as a good indicator of potential P loss when amended to sandy soils with low P-retention capacities.  相似文献   

11.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature.  相似文献   

12.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

13.
Laboratory and greenhouse studies compared the ability of water treatment residuals (WTRs) to alter P solubility and leaching in Immokalee sandy soil (sandy, siliceous, hyperthermic Arenic Alaquod) amended with biosolids and triple superphosphate (TSP). Aluminum sulfate (Al-WTR) and ferric sulfate (Fe-WTR) coagulation residuals, a lime softening residual (Ca-WTR) produced during hardness removal, and pure hematite were examined. In equilibration studies, the ability to reduce soluble P followed the order Al-WTR > Ca-WTR = Fe-WTR > hematite. Differences in the P-fixing capacity of the sesquioxide-dominated materials (Al-WTR, Fe-WTR, hematite) were attributed to their varying reactive Fe- and Al-hydrous oxide contents as measured by oxalate extraction. Leachate P was monitored from greenhouse columns where bahiagrass (Paspalum notatum Flugge) was grown on Immokalee soil amended with biosolids or TSP at an equivalent rate of 224 kg P ha(-1) and WTRs at 2.5% (56 Mg ha(-1)). In the absence of WTRs, 21% of TSP and 11% of Largo cake biosolids total phosphorus (PT) leached over 4 mo. With co-applied WTRs, losses from TSP columns were reduced to 3.5% (Fe-WTR), 2.5% (Ca-WTR), and <1% (Al-WTR) of applied P. For the Largo biosolids treatments all WTRs retarded downward P flux such that leachate P was not statistically different than for control (soil only) columns. The phosphorus saturation index (PSI = [Pox]/ [Al(ox) + Fe(ox)], where Pox, Al, and Fe(ox) are oxalate-extractable P, Al, and Fe, respectively) based on a simple oxalate extraction of the WTR and biosolids is potentially useful for determining WTR application rates for controlled reduction of P in drainage when biosolids are applied to low P-sorbing soils.  相似文献   

14.
Increasing antibiotic resistance genes in the environment may pose a threat to public health. In this study, tetracycline and sulfonamide resistance genes (Tet-W, Tet-O, and Sul-I) were quantified in 24 manure samples from three farms and 18 biosolids samples from seven different wastewater treatment plants using quantitative polymerase chain reaction methods. Concentrations of Tet-W and Tet-O genes were observed to be significantly higher (p < 0.05) in manure than in biosolids samples. The background soil samples showed significantly lower concentration of the above genes compared with manure and biosolids. Lime-stabilized biosolids showed significantly (p < 0.05) lower concentration of antibiotic resistance genes compared with other biosolids treatment methods. Elevated levels of antibiotic resistance genes (Tet-W, Tet-O, and Sul-I) were observed in the amended soil samples after the land application of manure or biosolids (Site A) monitored for a period of about 4 mo. However, at another site (Site B), no significant increase (p > 0.05) in concentration of antibiotic resistance genes was observed after biosolids application on soil. Even though the concentration of antibiotic resistance genes in manure was statistically higher than that in biosolids, when they were applied on land, the contribution to the soil depended on the background soil concentration and the soil characteristics. Further study of multiple soil samples in various locations is needed.  相似文献   

15.
Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer precipitation conditions, season of application did not affect soil NO3-N; in contrast, dormant season application increased soil NO3-N more than growing season application under wet spring-dry summer conditions.  相似文献   

16.
In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions.  相似文献   

17.
The long-term mobility of trace metals has been cited as a potential hazard by critics of EPA 503 rule governing the land application of biosolids. The objectives of this study were to assess the accumulation of Cu, Ni, Cd, and Zn within the soil profile; the distribution of exchangeable, specifically adsorbed, organic, and oxide fractions of each metal; and mass balance of Cu, Ni, and Zn 17 yr after a single biosolids application. Biosolids were applied to 1.5- x 2.3-m confined plots of a Davidson clay loam (fine, kaolinitic, thermic Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 750, 43, and 600 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Soils were sampled to a depth of 0.9 m and sectioned into 5-cm increments after separating the Ap horizon. Total (EPA-3050B), bioavailable (Mehlich-I), sequential extraction, and dispersible clay analyses were performed on samples from the control, 126 Mg ha(-1), and 210 Mg ha(-1) treatments. Trace metals are still concentrated in the top 0.2 m with slight enrichment down to 0.3 m. More than 85% of applied Cu, Ni, and Zn are still found in the topsoil where biosolids was incorporated and 95% or more of the applied metals were accounted for with mass balance calculations. Mehlich-I results showed a slight increase in metal concentration down to 0.35 m. Biosolids application increased the concentrations of trace metals in all the extracted fractions. The major portions of Cu, Zn, and Ni are associated with the metal-oxides fraction. Dispersible clay content and water-soluble metal contents were low and except for water-soluble Zn they were not affected by biosolids application. Results from this study showed that 17 yr after biosolids application there was negligible movement of trace metals through the soil profile and consequently there is little risk of contamination of ground water at this site.  相似文献   

18.
Some speculate that bioaerosols from land application of biosolids pose occupational risks, but few studies have assessed aerosolization of microorganisms from biosolids or estimated occupational risks of infection. This study investigated levels of microorganisms in air immediately downwind of land application operations and estimated occupational risks from aerosolized microorganisms. In all, more than 300 air samples were collected downwind of biosolids application sites at various locations within the United States. Coliform bacteria, coliphages, and heterotrophic plate count (HPC) bacteria were enumerated from air and biosolids at each site. Concentrations of coliforms relative to Salmonella and concentrations of coliphage relative to enteroviruses in biosolids were used, in conjunction with levels of coliforms and coliphages measured in air during this study, to estimate exposure to Salmonella and enteroviruses in air. The HPC bacteria were ubiquitous in air near land application sites whether or not biosolids were being applied, and concentrations were positively correlated to windspeed. Coliform bacteria were detected only when biosolids were being applied to land or loaded into land applicators. Coliphages were detected in few air samples, and only when biosolids were being loaded into land applicators. In general, environmental parameters had little impact on concentrations of microorganisms in air immediately downwind of land application. The method of land application was most correlated to aerosolization. From this large body of data, the occupational risk of infection from bioaerosols was estimated to be 0.78 to 2.1%/yr. Extraordinary exposure scenarios carried an estimated annual risk of infection of up to 34%, with viruses posing the greatest threat. Risks from aerosolized microorganisms at biosolids land application sites appear to be lower than those at wastewater treatment plants, based on previously reported literature.  相似文献   

19.
Biosolids, effluents, and manures are widely applied to agricultural land and other land with varying degrees of pretreatment or control. Regulations governing land application of biosolids take several broad forms in different countries, including limitations based on rates that do not lead to increases in background chemical concentrations or risk assessment approaches such as those used in the United States. Risk assessment is a process that is inherently limited by currently available information and practices, and consequently, risk-based land application limits must be reevaluated periodically. For complex mixtures such as biosolids, three principal categories of information will be affected by changing practices and scientific advances: (i) chemical constituents present in the material, (ii) the nature of expected exposures, and (iii) toxicity of the chemical constituents. New analytical methods and lower detection limits will affect chemical identification in wastes. Approaches to exposure assessment, such as increasing emphasis on probabilistic analyses, will continue to evolve, and exposure assumptions will change as new studies provide better data on factors such as soil ingestion, plant uptake of chemicals, and bioavailability of chemicals in soil. Similarly, toxicity assessments will be updated as new studies are conducted. The evolving science over the past decade is illustrated by comparing approaches used by the USEPA to assess human health and ecological risks for the Part 503 rule compared with the more recent evaluation of dioxins and related compounds in biosolids. While risks of chemicals in land-applied biosolids and other residuals need to be periodically re-evaluated, such re-evaluations may take forms other than full risk assessments.  相似文献   

20.
Chemical fractionation of phosphorus in stabilized biosolids   总被引:2,自引:0,他引:2  
Three chemicals-ferrous sulfate (FeSul), calcium oxide (CaO), and aluminum sulfate (alum)-were applied at different rates to stabilize P in fresh, anaerobically digested biosolids (FBS) obtained from an activated sewage treatment plant. A modified Hedley fractionation procedure was used to assess P forms in these sludge-borne materials and in a biosolids compost (BSC) prepared from the same FBS. Each biosolids material exhibited a unique pattern of P distribution among fractions. The most available P forms, namely: (i) water-soluble P (WSP); (ii) membrane-P; and (iii) NaHCO(3)-P, were stabilized by small rates of each of the chemicals; but the P transformation into more stable forms depended on the type of chemical added. The stabilized P forms were enhanced by high rates of CaO and FeSul, but were reduced by high rates of alum. The organic P (P(o)) in the first three fractions of the FeSul- and alum-stabilized biosolids was enhanced by the chemical addition, and P(o) transformation from NaOH-P(o) into NaHCO(3)-P(o) was found in calcium-stabilized biosolids. A positive relationship was found between NaHCO(3)-P(o) and the NaHCO(3)-extracted organic C in all chemically stabilized biosolids. One-step extraction by NaHCO(3) or NaOH underestimated P extraction compared to the stepwise extraction. The reported results are consistent with solid-state P speciation reported earlier and contribute important information for optimizing biosolids stabilization to reduce P loss after incorporation in soils and for maximizing soil capacity to safely store pre-stabilized biosolids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号