首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Within fluvial systems, the spatial variability of geomorphological characteristics of stream channels and associated streambed properties can affect many biogeochemical processes. In agricultural streams of the midwestern USA, it is not known how geomorphological variability affects sediment denitrification rates, a potentially important loss mechanism for N. Sediment denitrification was measured at channelized and meandering headwater reaches in east-central Illinois, a region dominated by intensive agriculture and high NO(3)-N stream export, between June 2003 and February 2005 using the chloramphenicol-amended acetylene inhibition procedure. Sediment denitrification rates were greatest in separation zones, ranging from 0.6 to 76.4 mg N m(-2) h(-1), compared with riffles, point bars, pools, and a run ranging from 0 to 36.5 mg N m(-2) h(-1). Differences in benthic organic matter (r = 0.70) and the percentage of fine-grained sediments (r = 0.93) in the streambeds controlled much of the spatial variations in sediment denitrification among the geomorphological features. Although two meandering study reaches removed 390 and 99% more NO(3)-N by sediment denitrification than adjacent channelized reaches, NO(3)-N loss rates from all reaches were between 0.1 and 15.7% d(-1), except in late summer. Regardless of geomorphological characteristics, streams in east-central Illinois were not able to process the high NO(3)-N loads, making sediment denitrification in this region a limited sink for N.  相似文献   

2.
Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data were used to determine the processes controlling transport and fate of NO(3)(-) in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m(-1) in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO(3)(-) concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO(3)(-) was transported into the stream. At two of the five study sites, NO(3)(-) in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO(3)(-) would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO(3)(-) loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds.  相似文献   

3.
Transport and fate of nitrate in headwater agricultural streams in Illinois   总被引:2,自引:0,他引:2  
Nitrogen inputs to the Gulf of Mexico have increased during recent decades and agricultural regions in the upper Midwest, such as those in Illinois, are a major source of N to the Mississippi River. How strongly denitrification affects the transport of nitrate (NO(3)-N) in Illinois streams has not been directly assessed. We used the nutrient spiraling model to assess the role of in-stream denitrification in affecting the concentration and downstream transport of NO(3)-N in five headwater streams in agricultural areas of east-central Illinois. Denitrification in stream sediments was measured approximately monthly from April 2001 through January 2002. Denitrification rates tended to be high (up to 15 mg N m(-2) h(-1)), but the concentration of NO(3)-N in the streams was also high (>7 mg N L(-1)). Uptake velocities for NO(3)-N (uptake rate/concentration) were lower than reported for undisturbed streams, indicating that denitrification was not an efficient N sink relative to the concentration of NO(3)-N in the water column. Denitrification uptake lengths (the average distance NO(3)-N travels before being denitrified) were long and indicated that denitrification in the streambed did not affect the transport of NO(3)-N. Loss rates for NO(3)-N in the streams were <5% d(-1) except during periods of low discharge and low NO(3)-N concentration, which occurred only in late summer and early autumn. Annually, most NO(3)-N in these headwater sites appeared to be exported to downstream water bodies rather than denitrified, suggesting previous estimates of N losses through in-stream denitrification may have been overestimated.  相似文献   

4.
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect located approximately 5 m from the stream to assess the effectiveness of the riparian zone as a NO(3)(-) sink. Subsurface NO(3)(-) injections revealed transport of up to 15 mg N L(-1) was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO(3)(-) retention under both background and elevated NO(3)(-) levels in summer and winter. Disappearance of added NO(3)(-) was followed by transient NO(2)(-) formation and, in the presence of C(2)H(2), by N(2)O formation, demonstrating potential denitrification. Under current land use, most NO(3)(-) associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO(3)(-) levels through agricultural cultivation would likely result in increased NO(3)(-) transport to the channel.  相似文献   

5.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   

6.
Natural-abundance delta15N showed that nitrate generated from commercial land application of swine (Sus scrofa domesticus) waste within a North Carolina Coastal Plain catchment was being discharged to surface waters by ground water passing beneath the sprayfields and adjacent riparian buffers. This was significant because intensive swine farms in North Carolina are considered non-discharge operations, and riparian buffers with minimum widths of 7.6 m (25 ft) are the primary regulatory control on ground water export of nitrate from these operations. This study shows that such buffers are not always adequate to prevent discharge of concentrated nitrate in ground water from commercial swine farms in the Mid-Atlantic Coastal Plain, and that additional measures are required to ensure non-discharge conditions. The median delta15N-total N of liquids in site swine waste lagoons was +15.4 +/- 0.2% vs. atmospheric nitrogen. The median delta15N-NO3 values of shallow ground water beneath and adjacent to site sprayfields, a stream draining sprayfields, and waters up to 1.5 km downstream were + 15.3 +/- 0.2 to + 15.4 +/- 0.2%. Seasonal and spatial isotopic variations in lagoons and well waters were greatly homogenized during ground water transport and discharge to streams. Neither denitrification nor losses of ammonia during spraying significantly altered the bulk ground water delta15N signal being delivered to streams. The lagoons were sources of chloride and potassium enrichment, and shallow ground water showed strong correlation between nitrate N, potassium, and chloride. The 15N-enriched nitrate in ground water beneath swine waste sprayfields can thus be successfully traced during transport and discharge into nearby surface waters.  相似文献   

7.
In this study, we used chlorofluorocarbon (CFC) age-dating to investigate the geochemistry of N enrichment within a bedrock aquifer depth profile beneath a south central Wisconsin agricultural landscape. Measurement of N(2)O and excess N(2) allowed us to reconstruct the total NO(3)(-) and total nitrogen (TN) leached to ground water and was essential for tracing the separate influences of soil nitrification and ground water denitrification in the collateral geochemical chronology. We identify four geochemical impacts due to a steady ground water N enrichment trajectory (39 +/- 2.2 micromol L(-1) yr(-1), r(2) = 0.96) over two decades (1963-1985) of rapidly escalating N use. First, as a by-product of soil nitrification, N(2)O entered ground water at a stable (r(2) = 0.99) mole ratio of 0.24 +/- 0.007 mole% (N(2)O-N/NO(3)-N). The gathering of excess N(2)O in ground water is a potential concern relative to greenhouse gas emissions and stratospheric ozone depletion after it discharges to surface water. Second, excess N(2) measurements revealed that NO(3)(-) was a prominent, mobile, labile electron acceptor comparable in importance to O(2.) Denitrification transformed 36 +/- 15 mole% (mol mol(-1) x 100) of the total N within the profile to N(2) gas, delaying exceedance of the NO(3)(-) drinking water standard by approximately 6 yr. Third, soil acids produced from nitrification substantially increased the concentrations of major, dolomitic ions (Ca, Mg, HCO(3)(-)) in ground water relative to pre-enrichment conditions. By 1985, concentrations approximately doubled; by 2006, CFC age-date projections suggest concentrations may have tripled. Finally, the nitrification induced mobilization of Ca may have caused a co-release of P from Ca-rich soil surfaces. Dissolved P increased from an approximate background value of 0.02 mg L(-1) in 1963 to 0.07 mg L(-1) in 1985. The CFC age-date projections suggest the concentration could have reached 0.11 mg L(-1) in ground water recharge by 2006. These results highlight an intersection of the N and P cycles potentially important for managing the quality of ground water discharged to surface water.  相似文献   

8.
Two‐stage ditches represent an emerging management strategy in artificially drained agricultural landscapes that mimics natural floodplains and has the potential to improve water quality. We assessed the potential for the two‐stage ditch to reduce sediment and nutrient export by measuring water column turbidity, nitrate (NO3?), ammonium (NH4+), and soluble reactive phosphorus (SRP) concentrations, and denitrification rates. During 2009‐2010, we compared reaches with two‐stage floodplains to upstream reaches with conventional trapezoid design in six agricultural streams. At base flow, these short two‐stage reaches (<600 m) reduced SRP concentrations by 3‐53%, but did not significantly reduce NO3? concentrations due to very high NO3? loads. The two‐stage also decreased turbidity by 15‐82%, suggesting reduced suspended sediment export during floodplain inundation. Reach‐scale N‐removal increased 3‐24 fold during inundation due to increased bioreactive surface area with high floodplain denitrification rates. Inundation frequency varied with bench height, with lower benches being flooded more frequently, resulting in higher annual N‐removal. We also found both soil organic matter and denitrification rates were higher on older floodplains. Finally, influence of the two‐stage varied among streams and years due to variation in stream discharge, nutrient loads, and denitrification rates, which should be considered during implementation to optimize potential water quality benefits.  相似文献   

9.
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.  相似文献   

10.
Riparian wetlands containing springs are thought to be ineffective at removing nitrate because contact times between the upwelled ground water and the underlying microbially active soils are short. Tracer experiments using lithium bromide (LiBr) and nitrate (NO3-N) injected at the surface were used to quantify residence times and NO3-N removal in a riparian swale characteristic of New Zealand hill-country pasture. An experimental enclosure was used with collecting trays at the downstream end to measure flow and concentration, shallow wells to measure subsurface concentrations, and an array of logging conductivity probes to monitor tracer continuously. The majority of added tracer reached the outlet more slowly than could be explained by surface flow, but more quickly than could be explained by Darcy seepage flow. There was evidence from the wells of tracer diffusing vertically to a depth of at least 5 cm into the surface soil layer, which was permanently saturated and highly porous. During dry weather 24 +/- 9% of added NO3-N was removed over a distance of 1.5 m largely by denitrification. The net uptake length coefficient for this wetland (K = 0.08 +/- 0.03 m(-1)) is slightly higher than the range (K = 0.01-0.07 m(-1)) measured in a small stream channel infested with macrophytes. Nitrate removal is expected to decrease with increasing flow. Seepage flow is estimated to have removed only 7 +/- 4% of the added NO3-N and we hypothesize that vertical diffusion substantially increases NO3-N removal in this type of wetland. Riparian wetlands with springs and surface flows should not be dismissed as having low NO3-N removal potential without checking whether there is significant vertical mixing.  相似文献   

11.
Sediment and nutrient concentrations in surface water in agricultural regions are strongly influenced by agricultural activities. In the Corn Belt, recent changes in farm management practices are likely to affect water quality, yet there are few data on these linkages at the landscape scale. We report on trends in concentrations of N as ammonium (NH(4)) and nitrate (NO(3)), soluble reactive phosphorus (SRP), and suspended sediment (SS) in three Corn Belt streams with drainage areas of 12 to 129 km(2) for 1994 through 2006. During this period, there has been an increase in conservation tillage, a decline in fertilizer use, and consolidation of animal feeding operations in our study watersheds and throughout the Corn Belt. We use an autoregressive moving average model to include the effects of discharge and season on concentrations, LOWESS plots, and analyses of changes in the relation between discharge and concentration. We found significant declines in mean monthly concentrations of NH(4) at all three streams over the 13-yr period, declines in SRP and SS in two of the three streams, and a decline in NO(3) in one stream. When trend coefficients are converted to percent per year and weighted by drainage, area changes in concentration are -8.5% for NH(4), -5.9% for SRP, -6.8% for SS, and -0.8% for NO(3). Trends in total N and P are strongly tied to trends in NO(3), SRP, and SS and indicate that total P is declining, whereas total N is not.  相似文献   

12.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   

13.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

14.
Topographically heterogeneous agricultural landscapes can complicate and accelerate agrochemical contamination of streams due to rapid transport of water and chemicals to poorly drained lower-landscape positions and shallow ground water. In the semiarid Palouse region, large parts of these landscapes have been tile drained to enhance crop yield. From 2000-2004 we monitored the discharge of a tile drain (TD) and a nearby profile of soil water for nitrate concentration ([NO(3)]), electrical conductivity level (EC), and water content to develop a conceptual framework describing soil nitrate occurrence and loss via subsurface pathways. Tile-drain baseflow [NO(3)] was consistently 4 mg N L(-1) and baseflow EC was 200 to 300 microS cm(-1). Each year sudden synoptic increases in TD discharge and [NO(3)] occurred in early winter following approximately 150 mm of fall precipitation, which saturated the soil and mobilized high-[NO(3)] soil water throughout the profile. The greatest TD [NO(3)] (20-30 mg N L(-1)) occurred approximately contemporaneous with greatest TD discharges. The EC decrease each year (to approximately 100 microS cm(-1)) during high discharge, a dilution effect, lagged approximately 1 mo behind the first appearance of high [NO(3)] and was consistent with advective transport of low-EC water from the shallow profile under saturated conditions. Water-budget considerations and temporal [NO(3)] patterns suggest that these processes deliver water to the TD from both lower- and upper-slope positions, the latter via lateral flow during the high-flow season. Management practices that reduce the fall reservoir of soil nitrate might be effective in reducing N loading to streams and shallow ground water in this region.  相似文献   

15.
Organic debris dams (accumulations of organic material) can function as "hotspots" of nitrogen (N) processing in streams. Suburban streams are often characterized by high flows that prevent the accumulation of organic debris and by elevated concentrations of solutes, especially nitrate (NO(3)(-)) and chloride (Cl(-)). In this study we (1) studied the effects of urbanization on the extent and characteristics of debris dams in large and small streams and (2) evaluated the effects of NO(3)(-) and Cl(-) on rates of N cycle processes in these debris dams. In some suburban streams debris dams were small and rare, but in others factors that reduce the effects of high stream flows fostered the maintenance of debris dams. Ambient denitrification enzyme activity (DEA) in these suburban and forested streams was positively correlated with stream NO(3)(-) concentrations. In laboratory microcosms, DEA in debris dam material from a forested reference stream was increased by NO(3)(-) additions. Chloride additions constrained the response of DEA to NO(3)(-) additions in material from the forested stream, but had no effect on DEA in material from streams with a history of high Cl(-) levels. Chloride additions changed the sign of net N mineralization from negative (consumption of inorganic N) to positive in debris dam material from the forested reference stream, but had no effect on net mineralization in material from streams with a history of exposure to Cl(-). Understanding the factors regulating the maintenance and N cycling activity of organic debris, and incorporating them into urban stream management plans could have important effects on N dynamics in suburban watersheds.  相似文献   

16.
This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.  相似文献   

17.
Abstract: The volume and sustainability of streamflow from headwaters to downstream reaches commonly depend on contributions from ground water. Streams that begin in extensive aquifers generally have a stable point of origin and substantial discharge in their headwaters. In contrast, streams that begin as discharge from rocks or sediments having low permeability have a point of origin that moves up and down the channel seasonally, have small incipient discharge, and commonly go dry. Nearly all streams need to have some contribution from ground water in order to provide reliable habitat for aquatic organisms. Natural processes and human activities can have a substantial effect on the flow of streams between their headwaters and downstream reaches. Streams lose water to ground water when and where their head is higher than the contiguous water table. Although very common in arid regions, loss of stream water to ground water also is relatively common in humid regions. Evaporation, as well as transpiration from riparian vegetation, causing ground‐water levels to decline also can cause loss of stream water. Human withdrawal of ground water commonly causes streamflow to decline, and in some regions has caused streams to cease flowing.  相似文献   

18.
There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO(-)(3) in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water.  相似文献   

19.
The effectiveness of riparian zones in mitigating nutrient in ground and surface water depends on the climate, management, and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well drained, mixed-deciduous riparian forest to buffer a river from N originating from a poorly drained grass seed cropping system. The study site was adjacent to the Calapooia River in the Willamette Valley, Oregon. Water was found to move from the rapid drainage of swale surface water. During winter hydrological events, the riparian forest also received river water. Low nitrate (NO3-) concentrations (0.2-0.4 mg NO3- -NL(-1)) in the shallow groundwater of the cropping system were associated with low rates of mineralization and nitrification (33 kg N ha(-1) yr(-1)) and high grass seed crop uptake of N (155 kg N ha(-1) yr(-1)). The riparian forest soil had higher rates of mineralization (117 kg N ha(-1) yr(-1)) that produced quantities of soil N that were within the range of literature values for plant uptake, leading to relatively low concentrations of shallow groundwater NO3 (0.6-1.8 mg NO3- -NL(-1)). The swale that dissected the cropping system and riparian area was found to have the highest rates of denitrification and to contribute dissolved organic C to the river. Given the dynamic nature of the hydrology of the Calapooia River study site, data suggest that the riparian forest plays a role not only in reducing export of NO3- from the cropping system to the river but also in processing nutrients from river water.  相似文献   

20.
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号