共查询到19条相似文献,搜索用时 93 毫秒
1.
农村污水瞬时排水的水量波动会引起处理过程水力停留时间变化,直接导致系统污水处理效能不佳等问题。选取农村污水AAO污水处理系统,探明了长/短HRT交替运行下最优DO条件,以及HRT与DO的响应关系,并提出了适宜农村地区的污水处理最佳DO调控策略。结果表明,好氧区DO维持约在1 mg·L−1,系统的污染物去除效能较好,出水COD、TN分别为14.88、10.15 mg·L−1,对应去除率为92%、64%。HRT改变直接影响系统好氧区DO变化,通过调控不同HRT下的DO,在保证出水水质的前提下,可实曝气量降低73%,能耗降低67%。该研究结果对农村污水AAO污水处理系统优化运行和提质增效提供参考。 相似文献
2.
两段接触氧化法处理生活污水的实验研究 总被引:2,自引:0,他引:2
刘忠伟 《环境污染治理技术与设备》2006,7(8):107-110
接触氧化法具有处理效率高,耐冲击负荷,活污水的模拟实验基础上,探讨了水力停留时间、供气量力停留时间均为1h时,COD、BOD,和SS的平均去除率氧化法对氨氮有较好的去除效果。工程实例运行情况表镇生活小区的生活污水处理。水水质好,占地面积小等特点。本文在两段接触氧化法处理生处理效果的影响。实验结果表明:在总气水比为5:1,两段的水别达到94.5%、93.2%和91.7%。与活性污泥法相比,两段接触,出水水质符合国家污水排放标准,该法也适用于厂矿企业及城镇生活小区的生活污水处理。 相似文献
3.
4.
接触氧化法具有处理效率高,耐冲击负荷,出水水质好,占地面积小等特点.本文在两段接触氧化法处理生活污水的模拟实验基础上,探讨了水力停留时间、供气量对处理效果的影响.实验结果表明:在总气水比为5∶1,两段的水力停留时间均为1 h时,COD、BOD5和SS的平均去除率分别达到94.5%、93.2%和91.7%.与活性污泥法相比,两段接触氧化法对氨氮有较好的去除效果.工程实例运行情况表明,出水水质符合国家污水排放标准,该法也适用于厂矿企业及城镇生活小区的生活污水处理. 相似文献
5.
蚯蚓生态滤池处理农村生活污水现场试验研究 总被引:4,自引:0,他引:4
对蚯蚓生态滤池处理太湖流域农村生活污水进行现场试验研究.通过对蚯蚓同化容量与污染负荷进行单因素分析,得出蚯蚓生态滤池处理农村生活污水的运行参数与运行方式,并据此进行连续运行试验.结果表明,在表面水力负荷1 m3/(m2*d)、湿干比(布水时间和落干时间之比)1∶3、蚯蚓负荷(以单位体积填料中蚯蚓的质量计)12.5 g/L的条件下,蚯蚓生态滤池处理农村生活污水具有可行性与高效性,单级系统的COD、总氮、氨氮和总磷的去除率分别在81%、66%、82%和89%左右.改进蚯蚓床填料、设计通风结构和采取适宜运行方式,是蚯蚓生态滤池成功应用于农村生活污水处理的三大重要因素. 相似文献
6.
采用作者自行设计制作的混凝-微纳米气浮装置对炼化企业污水处理厂二沉池出水进行深度处理,考察了混凝剂投加量、工作压力、回流比和水力停留时间对气浮效果的影响,结果表明,最佳工艺参数为:混凝剂FeCl3 30 mg/L,工作压力0.2 MPa,回流比为20%,水力停留时间6 min。在此实验条件下,COD去除率为39.13%,SS去除率为51.85%,气浮出水COD<60 mg/L,达到了《污水综合排放标准》(GB 8978-1996)一级B标准。 相似文献
7.
8.
针对滨海水产养殖区水质差,溶解氧不足造成对虾死亡的问题,以对虾养殖污水为实验对象,分别进行了螺旋藻在不同盐度梯度(0‰、10‰、15‰、20‰、25‰、30‰和35‰)和BOD5浓度水平(20 mg/L(平均)、40 mg/L(上限)、180mg/L(对照)以及不同投藻量(0、50、100和150 mg/L)情况下的增氧效果实验研究,并进一步构建了预测投加螺旋藻后水体中DO等因素变化的数学模型。实验结果表明,螺旋藻在20‰盐度下生物量增长最快,增氧效果在低污染水质条件下效果较好,最佳投藻量为100 mg/L。经过验证,模型拟合度较高,可以用来预测一定水质条件下螺旋藻增氧效果,对今后采用螺旋藻增氧处理养殖污水具有指导意义。 相似文献
9.
生态滤池技术在农村生活污水治理中应用越来越多,针对生态滤池技术存在持续曝气能耗较高,增大了处理成本的问题。采用生态滤池处理晋城市农村生活污水,研究了不同曝气条件对生态滤池净化效果的影响。结果表明,间歇曝气的生态滤池比无曝气的生态滤池生物作用更强,植物生长更茂盛,微生物群落的丰富度和多样性更高,污染物的去除效果更好。当间歇曝气采用2∶3、3∶3、4∶2的曝停比时,随着曝停比的增大,NH4+-N、TP、DTP、SRP的去除率增加,但TN、COD的去除率降低。采用相同的曝停比时,植物茂盛时生态滤池的净化效果更好。间歇曝气的生态滤池运行中,水生植物稀疏时采用3∶3的曝停比,植物茂盛后采用2∶3的曝停比,可获得较好的处理效果,并能耗较低。间歇曝气的生态滤池设计简单、自然生态性强、运行费用低,出水TN、COD能稳定达到山西省《农村生活污水处理设施水污染物排放标准》(DB 14/726-2019)的一级排放标准,NH4+-N、TP也具有较高的一级达标率。该研究为生态滤池在晋城市农村地区的应用提供了参考。 相似文献
10.
养殖污水生物处理的新型流态化技术原理及其应用案例 总被引:1,自引:0,他引:1
以COD、NH4+-N、SS值高以及臭味大的水质特征的养殖污水作为研究对象,针对一般处理模式中的生物反应器存在污泥相停留时间短、耐负荷冲击能力低、除碳与脱氮不能协调以及投资运行费用大等问题,自行研制了具有强化传质与混合功能的射流循环厌氧与气升循环好氧流态化反应器,实现了A/O2的组合生物强化工艺,再辅以预处理与后处理工艺,实践了规模为216 m3/d的工程设计与运行,通过连续6个月的运行数据来评价所提出工艺的工程效果。在A、O1与O2的运行负荷(kg COD/(m3.d))分别为6、6及0.5的近似条件下,当进水COD、BOD5、NH 4+-N和SS浓度分别为11 000~13 000、5 500~6 500、560~640和7 000~9 000 mg/L时,处理后出水浓度分别可降低至56.8~59.2、4.7~4.9、8.6~9.5和37.0~39.4 mg/L,各项指标均达到《广东省水污染物排放限值》(DB4426-2001)第2时段的一级排放标准限值要求,取得了明显的工程实效,表明所开发的技术有推广应用的价值。 相似文献
11.
12.
以可生物降解聚合为碳源的固相反硝化可以避免水产养殖用水硝酸盐处理过程中碳源反复添加、碳源不足或过量等问题。水力停留时间(hydraulic retention time, HRT)是生物反应器运行管理的主要参数之一, 用固定膜反应器固相反硝化的方法研究了HRT对以聚己内酯(polycaprolactone,PCL)为碳源的反应器去除循环水养殖系统硝酸氮(浓度为170~197 mg·L-1)的效率的影响。 研究结果表明不同水力停留时间对硝酸盐去除效率差异显著。在HRT 为6 h和8 h时,硝酸盐速率分别为(0.55±0.32) g·(L·d)-1和(1.05±0.33) g·(L·d)-1,且出水亚硝氮浓度和氨氮浓度均明显低于进水浓度;在HRT为4 h和2 h时,进出水硝酸盐浓度差异不明显。电子扫描显微镜观察显示PCL表面生物膜主要为杆状菌,应用傅里叶红外扫描观察发现使用前后PCL的化学结构没有发生明显改变。应用高通量方法测定的微生物群落结构表明,62%的细菌为Proteobacteria(62%),在鉴定出的细菌中,食酸菌属(Acidovorax), 固氮螺菌属(Azospira),丛毛单胞菌属(Comamonas), 代尔夫特菌属(Diaphorobacter), 懒小杆属(Ignavibacterium), 弗拉特氏菌属(Frateuria)可以同时降解PCL和进行反硝化。 相似文献
13.
好氧颗粒污泥自生动态膜生物反应器处理碱减量印染废水 总被引:1,自引:0,他引:1
自生动态膜生物反应器(SFDMBR)接种颗粒污泥启动,研究溶解氧浓度和水力停留时间对该反应器处理碱减量印染废水的影响。自生动态膜生物反应器形成稳定的动态膜后,出水浊度小于10 NTU,系统对浊度的去除率在90%以上,溶解氧和水力停留时间对反应器出水浊度基本无影响。系统对废水色度的去除率随着溶解氧浓度的提高和水力停留时间的延长而增加,但是系统对色度的去除效率一般不超过40%。溶解氧浓度由0.3 mg/L逐渐增大至2.4 mg/L,COD的去除率由40%提升至80%,而当溶解氧浓度大于1.0 mg/L后,UV254的去除率达到95%。水力停留时间在8~48 h时,COD去除效率由65%逐渐上升至85%左右;水力停留时间在8~32 h,UV254去除效率为68%~93%,超过32 h后水力停留时间对UV254去除效率的影响已不明显。 相似文献
14.
为探究生物滞留系统(bioretention system,BS)对水产养殖尾水的处理效能,设计并构建倒置(inverted bioretention system,IBS)和正置(control bioretention system,CBS)2组生物滞留系统,在不同进水条件下比较了2种BS构建方式的运行效能,通过胞外聚合物(EPS)、三维荧光光谱和电子传递活性(ETSA)等方法阐述了不同构建方式下BS的脱氮机制。结果表明:在不同进水条件下IBS的处理效能优于CBS,当运行间隔周期为1 d时,IBS的TN和NO3−-N去除率分别达到71.79%~82.00%和68.70%~85.84%,平均去除率比CBS分别高出10.65%和15.89%。CBS和IBS的TN和NO3−-N去除率随进水负荷的增加呈先升高后稳定的趋势,TP波动最小,去除率均稳定在97.04%~99.22%。构建方式对EPS的组分无明显影响,但对EPS含量和ETSA影响显著。IBS的构建方式可促进微生物分泌更多的EPS,其中EPS的多糖(PS)和蛋白质(PN)含量分别比CBS高出66.89 ug·g−1和603.24 ug·g−1,并且IBS的酪氨酸、色氨酸和微生物代谢产物明显高于CBS;此外,与CBS的ETSA为(0.47±0.07) ug·(g·min)−1,相比IBS提高了0.35 ug·(g·min)−1。以上研究结果为应用生物滞留系统技术处理养殖尾水提供参考。 相似文献
15.
臭氧/ 生物活性炭深度处理循环养殖废水 总被引:5,自引:0,他引:5
随着工厂化循环水养殖的不断发展,高浓度循环养殖废水对环境污染日益严重.为实现环境友好和资源节约,采用臭氧/生物活性炭对循环养殖废水进行深度处理中试研究.实验结果表明,臭氧化臭氧最佳投加量为4 mg/L,显著增强水体的可生化性,使TOC(总有机碳)/UV254(在波长为254 nm处的单位比色皿光程下的紫外吸光度)提高80%.臭氧/生物活性炭对循环养殖废水中的有机物和氨氮具有良好的去除效果.臭氧/生物活性炭对TOC、高锰酸盐指数和UV254的最终去除率比生物活性炭分别高11.9%、13.4%和6.5%.臭氧/生物活性炭和生物活性炭对氨氮的最终去除率分别为96.0%、90.7%. 相似文献
16.
以枯草杆菌为絮凝产生菌,优化养鱼污水对其培养条件,探讨其降解污水有机物效果及增殖变化,并讨论分析絮凝活性分布、成分组成。结果表明:pH 6.7~7.8、碳氮比20~40、COD≥85 mg/L养鱼污水(灭菌)培养该菌36 h,其培养液(2 mL投量)对高岭土悬液的絮凝率达39.5%,养鱼污水COD去除率达47.2%,絮凝菌生长良好;该絮凝菌其絮凝活性物质是菌体分泌物,成分主要为多糖。 相似文献
17.
18.
水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响 总被引:2,自引:0,他引:2
由于反应沉淀一体化反应器的HRT与SRT不同,因此HRT是否会影响反应器中氮的存在状态,亚硝态氮积累是否能实现尚无明确结论。针对以上问题,研究不同水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响,研究结果表明:反应器运行虽然运行过程中无污泥流失,但仍可实现亚硝酸盐的积累,出水亚硝态氮和氨氮的浓度比例受水力停留时间的影响。HRT为24h时,亚硝酸盐积累率可达到70%,但出水氨氮接近于0,很难满足ANAMMOX的进水要求;HRT为16h和12h时,亚硝酸盐积累率均可超过80%,出水氨氮和亚硝态氮的比例分别达到1.39:1和1.46:1,可为后续ANAMMOX反应提供良好进水条件。水力停留时间对污泥亚硝化潜力的影响为12h〉16h〉24h,对硝化潜力的影响为24h〉16h〉12h。不同水力停留时间下氨氧化速率和亚硝酸盐氧化速率均为24h〉16h〉12h。 相似文献
19.
为优化工厂化循环水石斑鱼养殖系统的运行管理,利用DO在线监测系统,跟踪监测了石斑鱼两次喂料期间(48 h内)养殖池DO的波动情况,考察了DO随养殖池内NH4+-N、NO2--N、溶解性COD的变化规律,并研究了该养殖条件下生物滤池对污染物的去除性能。结果表明:在该养殖条件下,NH4+-N、NO2--N和COD分别在28、36和44 h恢复至喂料前的水平,48 h内养殖池NH4+-N、NO2--N和COD维持在0.32、1.27和2.40 mg·L-1以下;养殖池DO波动明显,随着污染物浓度的增加而降低,喂料2 h后DO低于安全浓度6 mg·L-1,养殖石斑鱼容易缺氧死亡;在该养殖系统中,弹性填料滤池对COD的去除能力较强,单个循环时间内最大去除率为61.84%;珊瑚砂滤池对NH4+-N、NO2--N去除能力较强,单个循环时间内最大去除率分别为38.17%、56.43%。可知,系统水处理效果良好,基本满足循环水养殖石斑鱼的相关水质要求;运用DO在线监控系统,跟踪监测DO变化情况,结合DO随污染物浓度变化的相关规律,可及时察觉养殖池水质变化,以便采取有效调控措施。 相似文献