共查询到18条相似文献,搜索用时 78 毫秒
1.
微生物燃料电池在处理废水的同时可以产生电能,有希望同时解决废水再利用和能量再产生的问题。采用单室无膜空气阴极微生物燃料电池,处理模拟生活污水,探讨MFC处理模拟废水的效果。研究了以碳布(MFC1)、碳布负载碳纳米管(MFC2)、碳纳米管(MFC3)和泡沫镍(MFC4)作为4种不同的阳极材料,对MFC系统的启动、内阻和产电特性进行比较。结果表明,4种不同阳极MFC在水力停留时间24 h的条件下,对COD有很好的去除作用,其中MFC2的COD去除效率最大,为91.4%。在不影响MFC系统处理废水效果的前提下,实验得到4种阳极MFC系统中MFC2具有最小的内阻,为173.7Ω;并且其功率密度也大于其他3种MFC,达到401.2 mW/m2。 相似文献
2.
研究以碳纤维毡为阳极,采用不同的表面改性方式对微生物燃料电池(MFC)产电效率的影响,并通过塔菲尔曲线(Tafel)和慢速扫描循环伏安法(SSCV)研究了碳纤维毡表面经不同改性处理后作为阳极的电化学行为。结果表明.碳纤维毡经丙酮浸泡(CZ—C)和热处理(CZ-H)后,最大输出功率从763mW/m2上升到896mW/m2,提高了17%;电化学测试证实碳纤维毡热处理后阳极交换电流密度提高,且氧化峰电位正移、峰电流增大。 相似文献
3.
采用双室方形微生物燃料电池(MFC),以葡萄糖作为共基质,研究了共基质浓度对典型偶氮染料甲基橙在MFC阳极室中脱色效率及同步产电的影响。结果表明,在0~1.5 g/L浓度范围内,共基质浓度越大,甲基橙脱色率、COD去除率和最大输出电压越高。在共基质浓度为1.5 g/L,进水甲基橙为300 mg/L的条件下,8 h的脱色率高达95%,且在1 000 Ω外电阻下,最大输出电压达到662 mV;在无共基质条件下,8 h内对300 mg/L甲基橙的脱色率仅为7.5%,最大输出电压仅达到140 mV。厌氧对照实验表明,甲基橙在MFC中可以实现加速脱色,反应8 h后甲基橙在MFC中的脱色率提高了57%。该研究为开发新型MFC降解偶氮染料废水技术提供了理论依据。 相似文献
4.
基于双室微生物燃料电池(microbial fuel cells,MFCs),以高盐榨菜废水为燃料,考察了电池的运行状况,同时探讨了盐度变化对电池产电性能影响,并通过投加甜菜碱研究其对MFCs系统抵抗盐度负荷冲击能力的影响。结果表明:MFCs稳定运行时(阳极室容积80 mL),最大功率密度、开路电压和电池内阻分别为3.55 W·m-3、0.698 V和427 Ω;底物中添加2 mmol·L-1甜菜碱后电池产电性能得到明显提升;当废水含盐量(增加到5 g·L-1 NaCl)为31.2 g·L-1时电池产电性能达到最佳,但是继续增高盐度后电池产电性能会急剧下降;投加甜菜碱有助于提高系统抵抗盐度负荷变化造成的冲击,维持电池的产电输出。 相似文献
5.
炼油废水微生物燃料电池启动及影响因素 总被引:1,自引:0,他引:1
以炼油废水为碳源,构建双室填料型微生物燃料电池,考察接种液、外接电阻等电池启动条件,以及电导率、pH值和缓冲溶液强度等溶液性质对电池产电性能的影响。利用微生物燃料处理炼油废水,COD去除率(52±4)%,含油量去除率(81.8±3)%;利用废水中存在的原生菌即可启动电池,但启动期长,外加接种液可快速启动电池;启动时外接电阻的大小对电池稳定运行后的输出功率有明显影响,对电池内阻影响相对较小,当启动外接电阻为2 000Ω,电池输出功率最大,为288 mW/m3;随阳极溶液电导率电池增大,电池内阻降低,输出功率升高;pH值变化对电池阳极电势影响较大,进而影响电池输出,当溶液pH为9时,电池输出电压最大(388 mV),pH过高或过低均不利于电池产电;随着缓冲强度的增大,电池输出电压增大,且PBS缓冲强度的增大可从电导率增大和改善质子传递条件两方面提高电池的输出功率。 相似文献
6.
以双室微生物燃料电池为研究对象,改变活性污泥MLSS值、营养物质的量、营养物质种类、温度等运行条件,测量24 h内COD值、细菌数目和电压值,进而研究不同运行条件对微生物燃料电池运行初期产电性能的影响。结果表明:在其他同等条件下,只改变MLSS值时,MLSS值越大,产电性能愈佳,只改变葡萄糖浓度时,当葡萄糖浓度为60 mg/mL时,产电性能最佳,最大电压和功率密度可达224.8 mV和505 mW/m3,只改变营养物质种类时,当加入低糖和C源营养物质时,产电性能较佳,只改变运行温度,当温度为37 ℃时,产电性能最佳,最大电压和功率密度可达231.5 mV和535 mW/m3;改变上述条件时,细菌数目与MFC的产电性能呈显著正相关关系。 相似文献
7.
8.
为了提高污泥产电的效率,研究了以城市污水处理厂剩余污泥为基质的双室微生物燃料电池产电的4个影响因素:电极面积、电极间距、污泥浓度和污泥起始pH。研究结果表明,小电极面积电池的输出电压比大电极面积电池低,而电池的输出功率则正好相反;电极间距较小时(4.5 cm),电池的输出电压比电极间距较大(7.75 cm和13 cm)时高;实验的3个污泥浓度中,13.0 g/L为最佳污泥浓度,污泥浓度的升高或降低均会降低利用污泥产电的输出电压和单位污泥的产电功率,不利于污泥产电;当阳极室污泥的起始pH处于碱性时,电池的输出电压更高,污泥产电更好,其中pH为10.0时最好。极化曲线分析表明,这4个因素均会影响以污泥为基质的双室微生物燃料电池的性能。 相似文献
9.
微生物燃料电池 (MFC) 是一种利用微生物将有机物中的化学能直接转化成电能的环境友好型技术,已成为污水资源化领域的研究重点。尿液以高有机浓度、高电导率、营养物质丰富且产量庞大等特点成为MFC的优选基质。梳理了近十年以尿液为阳极基质的MFC研究工作,详细阐述了尿液作为MFC阳极基质的优势和工作机理,以及该研究领域的发展历程;总结了以尿液为阳极基质的MFC中产电微生物、电极及膜材料、反应器构型等因素对产电性能的影响;在现有研究的基础上就产电性能、能源与资源回收效益的提升以及工程化应用方面现存挑战与发展方向给出建议,以期为更好地解决基于尿液为阳极基质的MFC在实际应用中的难题提供参考。 相似文献
10.
阴极催化性能及材料对微生物燃料电池(microbial fuel cells,MFCs)的产电特性及制造成本有很大影响。本研究选用金属铂(Pt)、活性炭作为催化剂、聚四氟乙烯(PTFE)和道康宁1-2577作为阴极的扩散层、碳布和不锈钢网作为阴极的基体材料制备得4种阴极,分别考察了相应MFC的产电性能和阴极特性。结果表明,采用传统Pt催化剂+PTFE扩散层+碳布制备成的阴极(Pt-PTC),MFC的最大输出电压为560 mV,最大功率密度为808 mW/m2,而采用活性炭+道康宁1-2577+不锈钢网制备成的阴极(AC-DCS),MFC的最大输出电压为510 mV,最大功率密度为726 mW/m2,两者的MFC产电性能极为接近。SEM结果表明,活性炭催化层表面和道康宁1-2577扩散层分别比Pt催化层及PTFE扩散层的更均匀光滑。阴极线性伏安测定结果表明,AC-DCS与Pt-PTC的电化学氧化性能较为接近。AC-DCS阴极成本仅为Pt-PTC的1/300左右,是一种低成本扩大化生产MFC阴极的新方法。 相似文献
11.
在微生物燃料电池(MFC)中,与微生物接触的阳极自身电场环境就可能会对产电菌的生长和代谢产生重要影响,进而影响到MFC产电效能.为探索阳极电势的作用,本研究在微生物燃料电池的阳极室中通过设置附加电路来人为改变阳极电势,考察了阳极电势对MFC产电的影响.结果表明,当阳极电势在-380 mV降低到0 mV过程中,MFC输出功率提高.当阳极电势小于200 mV时,COD去除效率在60%~73%之间变化不大.较低或较高的阳极电势均可增加电池的库伦效率.阳极电势处于-380 mV到0 mV下,厌氧微生物主要以丙酸型发酵为主,产生大量乙酸;COD的分解和利用是分阶段进行的.不同阳极电势下MFC内阻变化主要受浓差内阻影响.阳极电势为-200 mV时欧姆内阻最低,但电化学活性较高. 相似文献
12.
13.
以受污染的城市河涌底泥为底质,湿地植物选用风车草(Clinopodium Urticifolium)或短叶茳芏(Cyperus Malaccensis),构建了湿地植物-沉积物微生物燃料电池(P-SMFC)及无植物的沉积物微生物燃料电池(SMFC)共3个电极处理组,研究了P-SMFC与SMFC的产电特性,并探讨了它们与对照组中底泥及上覆水中氮磷的迁移转化规律。结果表明,产电方面,在系统启动运行的7个月内,PSM1、SM和PSM2三个电极处理组均能维持较稳定的产电,输出电压在整个运行阶段总体稳定在0.30~0.50 V,且植物的引入提升了系统的产电性能。底泥修复方面,设置的5个处理组对底泥中有机质均有一定的降解作用,表现出PSM1、SM和PSM2处理组有机质的降解要显著高于PS1和PS2处理组,P-SMFC系统对底泥有机物的去除有显著的促进作用;系统中系统运行前2个月,2个P-SMFC处理组氨氮含量显著低于其他3个处理组,之后随着运行时间的延长,各处理组之间的变化差异性不大,5个处理组底泥中氨氮去除率均达到80%以上;电极的引入对底泥中硝氮的去除没有产生显著影响;各处理组底泥中总磷去除率不同,分别为PSM1处理组8.67%、SM处理组8.89%、PSM2处理组7.33%、PS1处理组12.45%、PS2处理组8.89%,产电过程抑制了磷的迁移,有助于底泥中磷的稳定。 相似文献
14.
微生物燃料电池(MFC)的电极材料是决定MFC性能的关键。本研究利用核桃壳生物炭制成MFC电极材料,对核桃壳生物炭基电极的制备条件、MFC的产电性能进行了探讨,利用比表面积分析、扫描电镜、拉曼光谱及电极电化学等方法对生物炭电极进行表征。结果表明: 最佳电极制备条件为活化时生物炭:氯化锌质量比5:3,真空煅烧温度600 ℃,生物炭:聚苯胺:热熔胶质量比5:1:4,在进水COD平均值为685 mg·L−1、氨氮平均值为38 mg·L−1、外电阻为1 000 Ω条件下,MFC的稳定输出电压为0.136 V,最大功率密度达到51 mW·m−3,内阻为762 Ω,运行7 d后,COD和氨氮的去除率分别可达到85%和88%,以上研究结果为制备有前景的MFC的电极材料提供了参考。 相似文献
15.
微生物燃料电池(microbial fuel cells,MFC)可用于处理有机废水并同时处理污水中的重金属。为了对MFC处理含铜废水进行优化,采用了KMnO4-MFC与Cu-MFC串联,通过前者产生的较高电压对后者处理含铜废水过程提供电压和功率的补给并获得额外电能,结果表明,KMnO4-MFC在KMnO4浓度为0.5、1、2 g·L-1时输出最大功率密度分别为288、433、700 mW·m-2,而Cu-MFC在Cu2+浓度为10 mg·L-1时最大功率密度仅为218.75 mW·m-2,二者串联能够明显加快Cu-MFC对Cu2+的回收速率,串联时Cu2+的回收率可达98%,24 h回收率可达91.7%,与单独Cu-MFC相比速率提高1倍。串联后,该种方法在加速铜回收过程的同时还能获得额外的电能,其最高输出功率可达143 mW。 相似文献
16.
为探查不同电子受体产电性能及对阳极微生物群落的影响,研究了3种电子受体(铁氰化钾、曝气阴极、过硫酸钾),构建了双室榨菜废水微生物燃料电池系统(microbial fuel cells,MFCs),实现了污水处理和能量回收的双重目的,探讨了不同电子受体(铁氰化钾、曝气阴极、过硫酸钾)对榨菜废水MFCs产电性能及阳极微生物群落的影响。结果表明:在产电性能方面,当过硫酸钾作为阴极电子受体时,电池输出电压、库仑效率、功率密度均优于另外2种常用阴极电子受体(铁氰化钾和氧气);在500 Ω的外接电阻间歇运行的条件下,其输出电压、库仑效率、功率密度分别为802 mV、(33±1.6)%、697 mW·m−2。阳极生物16S rRNA基因测序分析表明,水解发酵菌为榨菜废水微生物燃料电池阳极核心菌群,铁氰化钾、氧气和过硫酸钾MFCs阳极微生物菌群相对丰度分别为64.3%、63.6%和75.51%,包括Lentimicrobium、Synergistaceae、Sphaerochaeta、Anaerolineaceae、Draconibacteriacea菌属。阴极电子受体不同的MFCs的阳极微生物群落核心菌群类似,但是丰度有所不同。势差较大的电子受体(过硫酸钾)微生物群落多样性和丰富度较高,产电和污染物去除效果较好。 相似文献
17.
18.
双室微生物燃料电池处理硝酸盐废水 总被引:2,自引:1,他引:2
基于双室微生物燃料电池(microbial fuel cell,MFC),针对阴极分别接种活性污泥(A-MFC)和反硝化细菌(D-MFC),研究其产电情况和硝酸盐废水去除效果。结果表明,在产电的同时都可有效去除废水中的硝酸盐污染物。在外接电阻100Ω的情况下,2种MFC均具有良好的产电性能,A-MFC和D-MFC达到的最大输出电压分别为119.6 mV和117.2mV,最大功率密度分别为23.40 mW/m2和26.63 mW/m2;同时两者在阴极室的平均反硝化速率分别为1.86 mg/(L.d)和2.19 mg/(L.d),阳极室的平均COD去除率分别为81.9%和82.4%。另外,通过扫描电镜观察可知,A-MFC和D-MFC阴极碳布表面形貌存在差异,并且阳极与阴极碳布表面形貌差异显著。 相似文献