首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zhou C  Zhou Q  Wang S 《Ambio》2003,32(1):6-12
Research on the terrestrial carbon cycle is an important component in the study of global change. Soil organic carbon, as the main part of the terrestrial carbon reservoir, plays an important role in the Earth's carbon cycle. To accurately estimate soil organic carbon storage, its composition and dynamic change must be determined. This presents a challenge to research on the soil carbon cycle, especially in China where the nationwide soil organic carbon reservoir largely remains unknown. This paper reports a research project that attempts to estimate the nationwide soil organic carbon reservoir. Data from 2473 soil profiles from the second national soil survey were collected and GIS technology was employed to quantify the national soil carbon reservoir. The analytical results show that the total amount of soil organic carbon is about 92.4 Pg (Pg = 10(15) g) and that the average carbon density is about 10.53 kg C m(-2). The spatial distribution of soil organic carbon was also analyzed and mapped. This study presents basic data and an analysis method for carbon-cycle studies and also provides scientific support for policy-making efforts to control CO2 emissions in China.  相似文献   

2.
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.  相似文献   

3.
The turnover of natural organic matter (NOM) in soils results in CO(2) production and the formation of various organic carbon pools of different stabilities. These humification products are reaction partners for binding and remobilisation of pesticides in soil. Research is needed to characterise soil organic carbon pools to interpret the functioning of soils with respect to storage, filter, buffer and degradation potentials. The experimental set ups must be embedded in a time and space perspective of organic carbon dynamics and anthropogenic impact and must deal with mechanisms taking place at the molecular level (structure activity relationships) and the system level (pool characteristics and reactivities). The sound prediction of these mechanisms is still a matter of scientific debate because the structure of NOM and its reaction potential is still not understood.  相似文献   

4.
An experimental design is described to estimate the fraction of secondary fine particle from the biogenic component of volatile organic compounds (VOCs) in the atmosphere using radiocarbon isotopic abundance ratios. The method distinguishes between "modern" carbon (C), and "old" C of primary and secondary origins based on three components, condensed-phase organic carbon (OC), semi-volatile particulate compounds (SVOCs), and VOCs. The method depends on interpretation of diurnal and seasonal variation in OC, SVOC, and VOC concentrations. Sampling employs a filter-denuder unit, which collects the three C components for isotopic analysis. The samples are collected repetitively for a daily sequence of the same hourly intervals covering diurnal periods with similar meteorological conditions. Collected C is thermally treated to separate OC from black carbon on filters and VOCs or SVOCs from adsorbents, with all four fractions individually oxidized to carbon dioxide to determine the radiocarbon content by accelerator mass spectrometry. Using C isotope abundance, the data are interpreted for fractions of primary modern C and secondary modern C as estimated from averaging diurnal and seasonal variations in the concentration data. As support for interpretation, samples of OC, SVOCs, and VOCs would be analyzed for speciation to identify source indicator species present.  相似文献   

5.
Using three sets of satellite data for burned areas together with the tree cover imagery and a biogeochemical component of the Integrated Science Assessment Model (ISAM) the global emissions of CO and associated uncertainties are estimated for the year 2000. The available fuel load (AFL) is calculated using the ISAM biogeochemical model, which accounts for the aboveground and surface fuel removed by land clearing for croplands and pasturelands, as well as the influence on fuel load of various ecosystem processes (such as stomatal conductance, evapotranspiration, plant photosynthesis and respiration, litter production, and soil organic carbon decomposition) and important feedback mechanisms (such as climate and fertilization feedback mechanism). The ISAM estimated global total AFL in the year 2000 was about 687 Pg AFL. All forest ecosystems account for about 90% of the global total AFL. The estimated global CO emissions based on three global burned area satellite data sets (GLOBSCAR, GBA, and Global Fire Emissions Database version 2 (GFEDv2)) for the year 2000 ranges between 320 and 390 Tg CO. Emissions from open fires are highest in tropical Africa, primarily due to forest cutting and burning. The estimated overall uncertainty in global CO emission is about ±65%, with the highest uncertainty occurring in North Africa and Middle East region (±99%). The results of this study suggest that the uncertainties in the calculated emissions stem primarily from the area burned data.  相似文献   

6.
Abstract

An experimental design is described to estimate the fraction of secondary fine particle from the biogenic component of volatile organic compounds (VOCs) in the atmosphere using radiocarbon isotopic abundance ratios. The method distinguishes between “modern” carbon (C), and “old” C of primary and secondary origins based on three components, condensed-phase organic carbon (OC), semi-volatile particulate compounds (SVOCs), and VOCs. The method depends on interpretation of diurnal and seasonal variation in OC, SVOC, and VOC concentrations. Sampling employs a filter-denuder unit, which collects the three C components for isotopic analysis. The samples are collected repetitively for a daily sequence of the same hourly intervals covering diurnal periods with similar meteorological conditions. Collected C is thermally treated to separate OC from black carbon on filters and VOCs or SVOCs from adsorbents, with all four fractions individually oxidized to carbon dioxide to determine the radiocarbon content by accelerator mass spectrometry. Using C isotope abundance, the data are interpreted for fractions of primary modern C and secondary modern C as estimated from averaging diurnal and seasonal variations in the concentration data. As support for interpretation, samples of OC, SVOCs, and VOCs would be analyzed for speciation to identify source indicator species present.  相似文献   

7.
Agricultural ecosystems have the potential to sequester carbon in soils by altering agricultural management practices (i.e. tillage practice, cover crops, and crop rotation) and using agricultural inputs (i.e. fertilizers and irrigation) more efficiently. Changes in agricultural practices can also cause changes in CO2 emissions associated with these practices. In order to account for changes in net CO2 emissions, and thereby estimate the overall impact of carbon sequestration initiatives on the atmospheric CO2 pool, we use a methodology for full carbon cycle analysis of agricultural ecosystems. The analysis accounts for changes in carbon sequestration and emission rates with time, and results in values representing a change in net carbon flux. Comparison among values of net carbon flux for two or more systems, using the initial system as a baseline value, results in a value for relative net carbon flux. Some results from using the full carbon cycle methodology, along with US national average values for agricultural inputs, indicate that the net carbon flux averaged over all crops following conversion from conventional tillage to no-till is -189 kg C ha(-1) year(-1) (a negative value indicates net transfer of carbon from the atmosphere). The relative net carbon flux, using conventional tillage as the baseline, is -371 kg C ha(-1) year(-1), which represents the total atmospheric CO2 reduction caused by changing tillage practices. The methodology used here illustrates the importance of (1) delineating system boundaries, (2) including CO2 emissions associated with sequestration initiatives in the accounting process, and (3) comparing the new management practices associated with sequestration initiatives with the original management practices to obtain the true impact of sequestration projects on the atmospheric CO2 pool.  相似文献   

8.
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.  相似文献   

9.
Chung N  Alexander M 《Chemosphere》2002,48(1):109-115
Sixteen soils with markedly different properties were analyzed to determine their porosity in the range of 7 nm-10 microm, cation-exchange capacity (CEC), surface area and clay mineralogy. The extent of sequestration of phenanthrene and atrazine has been shown to differ markedly among these soils. Correlations were sought between soil characteristics and four methods of measuring sequestration. Simple correlation analysis showed that some but not all measures of phenanthrene and atrazine sequestration were highly correlated with organic C content, nanoporosity or CEC but not other properties of the soils. Multiple linear-regression analysis suggested an interaction of organic C content with soil texture, CEC or surface area in determining the extent of atrazine or phenanthrene sequestration. We conclude that organic C content, CEC and other properties of soil may be useful predictors of sequestration of some compounds.  相似文献   

10.
The Amazonian forest is, due to its great size, carbon storage capacity and present-day variability in carbon uptake and release, an important component of the global carbon cycle. Paleo-environmental reconstruction is difficult for Amazonia due to the scarcity of primary palynological data and the mis-interpretation of some secondary data. Studies of lacustrine sediment records have shown that Amazonia has known periods in which the climate was drier than it is today. However, not all geomorphological features such as dunes, and slope erosion, which are thought to indicate rainforest regression, date from the time of the Late Glacial Maximum (LGM) and these features do not necessarily correspond to episodes of forest regression. There is also uncertainty concerning LGM carbon storage due to rainforest soils and biomass estimates. Soil carbon content may decrease moderately during the LGM, whereas rainforest biomass may change considerably in response to changes in the global environment. Biomass per unit area in Amazonia has probably been reduced by the cumulative effects of low CO2 concentration, a drier climate and lower temperatures. As few paleo-vegetation data are available, there is considerable uncertainty concerning the amount of carbon stored in Amazonia during the LGM, which may have corresponded to 44-94% of the carbon currently stored in biomass and soils.  相似文献   

11.
Soil carbon dynamics in cropland and rangeland   总被引:36,自引:0,他引:36  
Most soils in the Midwestern USA have lost 30 to 50% of their original pool, or 25 to 40 Mg C/ha, upon conversion from natural to agricultural ecosystems. About 60 to 70% of the C thus depleted can be resequestered through adoption of recommended soil and crop management practices. These practices include conversion from plow till to no till, frequent use of winter cover crops in the rotation cycle, elimination of summer fallow, integrated nutrient management along with liberal use of biosolids and biological nitrogen fixation, precision farming to minimize losses and enhance fertilizer use efficiency, and use of improved varieties with ability to produce large root biomass with high content of lignin and suberin. The gross rate of soil organic carbon (SOC) sequestration ranges from 500 to 800 kg/ha/year in cold and humid regions and 100 to 300 kg/ha/year in dry and warm regions. The rate of SOC sequestration can be measured with procedures that are cost effective and credible at soil pedon level, landscape level, regional or national scale. In addition to SOC, there is also a large potential to sequester soil inorganic carbon (SIC) in arid and semi-arid regions. Soil C sequestration has numerous ancillary benefits. It is truly a win-win situation: extremely cost-effective, and a bridge to the future until alternative energy options take effect.  相似文献   

12.
A microcosm study was conducted to address the influences of air-soil partition and sequestration on the fate of polycyclic aromatic hydrocarbons (PAHs) in soil. Sterilized and unsterilized soils with soil organic carbon (SOC) content ranging from 0.23 to 7.06% were incubated in a chamber with six PAHs supplied through air. After 100 d of incubation when the system approached pseudo-steady state, the PAHs concentrations in the unsterilized soils still correlated with SOC significantly, while the association did not exist for those sterilized. The lower degradation rate in the soil with higher SOC was likely the major reason for the association between SOC and PAHs concentrations, while the decreased surface porosity likely suppressed such correlation for the sterilized samples. The results indicated that the sequestration was likely the major mechanism for the accumulation of PAHs in soils, while both of the soil porosity and PAHs properties had observed influences.  相似文献   

13.
Fleischer S 《Ambio》2003,32(1):2-5
Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.  相似文献   

14.
Abstract

The metabolism of 14C‐carbaryl and 14C‐1‐naphthol in moist and flooded soils was studied in a continuous flow‐through system over a period of 28 days permitting 14C‐mass balance. The percent distribution of radiocarbon in organic volatiles, carbon dioxide, extractable and non‐extractable (bound) fractions of soils were determined. Organic volatiles could not be detected in both carbaryl and 1‐naphthol treated soils. More of 14CO2 (25.6%) was evolved from moist than flooded soil (15.1%) treated with carbaryl. However, the mineralization of 14C‐1‐naphthol was negligible. The extractable radiocarbon was more in flooded soil (28.9%) than moist soil (5.5%) from carbaryl treatment. Less than one percent was present as parent compound, whereas carbaryl was mainly metabolized to 5‐hydroxy carbaryl in moist soil and to 4‐ and 5‐hydroxy carbaryl in flooded soil. The extractable radiocarbon amounted to 18.2 and 24.3% in moist and flooded soils respectively and the parent compound was less than one percent with 1‐naphthol treatment. Most of the radiocarbon was found as soil bound residues; the formation being more with 1‐naphthol than carbaryl. Humin fraction of the soil organic matter contributed most to soil bound residues of both carbaryl and 1‐naphthol.  相似文献   

15.
Organic matter is a major metal-retaining constituent in soils. Among the diversity of organic components in soils, particulate organic matter (POM) accumulates large amounts of metals, but the fate of such metal-associated POM is unknown. We studied different POM size fractions and their corresponding mineral size-fractions isolated from the surface horizon of a soil affected by metallurgical fallout. Analyses of total and EDTA extractible metal contents performed on all size fractions demonstrated that with decreasing POM size, larger metal concentrations were observed but they were less extractable. Micromorphological study revealed the occurrence of opaque parts in decaying POM fragments and their individualization as fine, irregularly shaped opaque fragments in the soil matrix. This work suggested a mutual sequestration of metal pollutants and organic carbon as micro-meter sized, metal-enriched organic particles derived from POM, representing an original pathway for natural attenuation of risk related to metal contaminated soils.  相似文献   

16.
Bogan BW  Sullivan WR 《Chemosphere》2003,52(10):1717-1726
Six soils, obtained from grasslands and wooded areas in Northeastern Illinois, were physicochemically characterized. Measured parameters included total organic carbon (TOC) content, contents of humic acid, fulvic acid and humin, pore volume and pore size distribution, and chemical makeup of soil organic matter (determined using solid-state 13C-NMR). Moistened, gamma-sterilized soils were spiked with 200 ppm of either phenanthrene or pyrene (including 14C label); following 0, 40, or 120 days of aging, the contaminant-spiked soils were then inoculated with Mycobacterium austroafricanum strain GTI-23, and evolution of 14CO2 was assessed over a 28-day period. Results for both phenanthrene and pyrene indicated that increased contact time led to increased sequestration and reduced biodegradation, and that TOC content was the most important parameter governing these processes. One soil, although only tested with phenanthrene, showed significantly lower-than-expected sequestration (higher-than-expected mineralization) after 40 days of aging, despite a very high TOC value (>24%). Because the level of sequestration in this soil was proportional to the others after 120 days of aging, this implies some difference in the temporal progression of sequestration in this soil, although not in its final result. The primary distinguishing feature of this soil was its considerably elevated fulvic acid content. Further experiments showed that addition of exogenous fulvic acid to a soil with very low endogenous humic acids/fulvic acids content greatly enhanced pyrene mineralization by M. austroafricanum. Extractabilities of 13 three- to six-ring coal tar PAHs in n-butanol from the six soils after 120 days of sequestration were strongly TOC-dependent; however, there was no discernible correlation between n-butanol extractability and mycobacterial PAH mineralization.  相似文献   

17.
Quantifying combustion aerosols transported to Summit, Greenland has typically involved the measurement of water-soluble inorganic and organic ions in air, snow, and ice. However, the ubiquitous nature of atmospheric soluble ions makes it difficult to separate the combustion component from the natural component. More specific combustion indicators are therefore needed to accurately quantify inputs from biomass and fossil-fuel burning. This work reports on radiocarbon (14C) analysis of elemental carbon (EC) and quantification of polycyclic aromatic hydrocarbons (PAHs) of water-insoluble particles from a snowpit excavated at Summit, Greenland in 1996. The 14C measurements allowed us to quantify the relative contribution of EC from biomass burning and fossil-fuel combustion transported to and deposited at Summit during periods of 1994 and 1995. Specific PAHs associated with conifer combustion helped to identify snowpit layers impacted by forest fires. Our results show that fossil EC was the major component during spring and fall 1994, while biomass EC and fossil EC were present in roughly equal amounts during summer 1994. PAH ratios in spring layers of the snowpit indicate substantial inputs from anthropogenic sources and the ΣPAH depth profile displays springtime maxima that coincided with non-sea-salt sulfate ion maximum concentrations. In other layers, ammonium ion concentrations were independent of the isotopic and molecular carbon measurements. This work demonstrates the utility of radiocarbon techniques to quantify the two different sources of combustion-generated particles at Summit; however, portions of the 14C results were indeterminate due to large uncertainties that were the result of chemical impurities introduced in the EC isolation technique. Additionally, PAH measurements were successfully performed on as little as 100 ml of snowmelt water, demonstrating the potential for future finer sample resolution.  相似文献   

18.
The microbial activity in soils was a critical factor governing the degradation of organic micro-pollutants. The present study was conducted to analyze the effects of soil organic matter on the development of degradation potentials for polycyclic aromatic hydrocarbons (PAHs). Most of the degradation kinetics for PAHs by the indigenous microorganisms developed in soils can be fitted with the Logistic growth models. The microbial activities were relatively lower in the soils with the lowest and highest organic matter content, which were likely due to the nutrition limit and PAH sequestration. The microbial activities developed in humic acid (HA) were much higher than those developed in humin, which was demonstrated to be able to sequester organic pollutants stronger. The results suggested that the nutrition support and sequestration were the two major mechanisms, that soil organic matter influenced the development of microbial PAHs degradation potentials.  相似文献   

19.
二氧化碳储存技术的研究现状和展望   总被引:19,自引:0,他引:19  
为了减少因温室效应造成的危害,必须大量减少CO2的人为排放.将化石燃料燃烧产生的CO2进行储存(尤其是地下储存)能够长期、有效地阻止大气中CO2浓度的增加.通过对CO2储存技术研究现状的介绍,对中国今后开展CO2地下储存技术提出了建议和研究方向.  相似文献   

20.
Impact of soil movement on carbon sequestration in agricultural ecosystems   总被引:6,自引:0,他引:6  
Recent modeling studies indicate that soil erosion and terrestrial sedimentation may establish ecosystem disequilibria that promote carbon (C) sequestration within the biosphere. Movement of upland eroded soil into wetland systems with high net primary productivity may represent the greatest increase in storage capacity potential for C sequestration. The capacity of wetland systems to capture sediments and build up areas of deposition has been documented as well as the ability of these ecosystems to store substantial amounts of C. The purpose of our work was to assess rates of sediment deposition and C storage in a wetland site adjacent to a small first-order stream that drains an agricultural area. The soils of the wetland site consist of a histosol buried by sediments from the agricultural area. Samples of deposited sediments in the riparian zone were collected in 5 cm increments and the concentration of 137Cs was used to determine the 1964 and 1954 deposition layers. Agricultural activity in the watershed has caused increased sediment deposition to the wetland. The recent upland sediment is highly enriched in organic matter indicating that large amounts of organic C have been sequestered within this zone of sediment deposition. Rates of sequestration are much higher than rates that have occurred over the pre-modern history of the wetland. These data indicate the increased sedimentation rates in the wetland ecosystem are associated with increased C sequestration rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号