首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   

2.
Earlier studies by the authors on English soils under grassland strongly supported their hypothesis that soil/plant systems have naturally evolved to conserve nitrogen (N) by having a close match between the dynamics of mineral-N production in soils and the dynamics of plant N requirements. Thus, maximum mineral-N production in soils occurred in spring when plant N requirements were greatest and were very low in mid to late summer. Low temperature and a high C:N ratio of senescing material helped to conserve N in winter, but mobile N was associated with pollution inputs. We test the hypothesis that under the much more arid conditions of Pakistan, soil/plant systems naturally have evolved to conserve mineral-N, especially over the very dry and cooler months between October and February. When soils from a grassland site were incubated at ambient temperatures after removal of plant roots and exclusion of atmospheric N inputs, there was consistent evidence of immobilization of nitrate and immobilization and possibly volatilization of ammonia/ammonium. In the wetter months of July and August, the soil at 0–10 cm depth showed no evidence of significant ammonium-N production in July and only small ammonium production at 10–20 cm depth in August, but was associated with significant nitrate-N immobilization in August. Nitrate leaching only appeared likely towards the end of the rainy season in September. The results strongly suggest that, under grass, the retention of atmospheric N inputs over the long dry periods is regulating the pools of available N in the soils, rather than the N produced by mineralization of soil organic matter.  相似文献   

3.
Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest—Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m2 and 883.71 g/m2 indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g?C/m2/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R 2?=?0.562) and the lowest (R 2?=?0.223) under Turkish fir.  相似文献   

4.
The aim of this study is to assess soil quality in Mediterranean forests of Central Italy, from evergreen to deciduous, with different types of management (coppice vs. high forest vs. secondary old growth) and compaction impacts (machinery vs. recreational). Soil quality was evaluated studying soil microarthropod communities and applying a biological index (QBS-ar) based on the concept that the higher is the soil quality, the higher will be the number of microarthropod groups well adapted to the soil habitat. Our results confirm that hardwood soils are characterised by the highest biodiversity level among terrestrial communities and by a well-structured and mature microarthropod community, which is typical of stable ecosystems (QBS value, >200). While silvicultural practices and forest composition do not seem to influence QBS-ar values or microarthropod community structure, the index is very efficient in detecting soil impacts (soil compaction due to logging activities). Several taxa (Protura, Diplura, Coleoptera adults, Pauropoda, Diplopoda, Symphyla, Chilopoda, Diptera larvae and Opiliones) react negatively to soil compaction and degradation (QBS value, <150). In particular, Protura, Diplura, Symphyla and Pauropoda, are taxonomic groups linked to undisturbed soil. This index could also be a useful tool in monitoring soil biodiversity in protected areas and in urban forestry to prevent the negative effects of trampling. QBS-ar is a candidate index for biomonitoring of soil microarthropod biodiversity across the landscape to provide guidance for the sustainable management of renewable resource and nature conservation.  相似文献   

5.
Magnetic susceptibility (κ) is an easily detectable geophysical parameter that can be used as a proxy or semi-quantitative tracer of atmospheric industrial and urban dusts deposited in topsoil. An enhanced κ value of topsoil is in many cases also associated with high concentrations of soil pollutants (mostly heavy metals). High-resolution magnetic screening of topsoil in areas of high pollution influx is a useful tool for detection of pollution “hot spots”. General and regional screening maps with a grid density of 10 or 5 km have been performed on the basis of forest topsoil measurement only. The purpose of this study was to perform high-resolution magnetic screening with different grid densities in both forested and agricultural areas (arable land). Our large study area (ca. 200 km2) was located in a relatively more polluted region of the central part of Upper Silesia, and a second (small) one (ca. 100 m2) was located in the western part of Upper Silesia, with considerably lower influx of pollution. In the framework of this study, we applied a statistical comparison of data obtained in forested areas and on arable land. The arable soil showed statistically significantly lower κ values, the result of “physical dilution” of the arable layer caused by annual ploughing. Thus arable soils must be avoided during high-resolution field measurement. From semivariograms, it was clear that the spatial correlations in forest topsoil are much stronger than in arable soil, which suggests that a denser measurement grid is required in forested areas.  相似文献   

6.
Dissolved organic carbon (DOC) was studied in atmospheric deposition samples collected on a weekly basis in 2005-2009 at 10 forest plots in Italy. The plots covered a wide range of geographical attributes and were representative of the main forest types in Italy. Both spatial and temporal variations in DOC concentrations and fluxes are discussed, with the aim of identifying the main factors affecting DOC variability. DOC concentration increased from bulk to throughfall and stemflow water samples at all sites, as an effect of leaching from leaves and branches, going from 0.7-1.7 mg C L(-1) in bulk samples to 1.8-15.8 mg C L(-1) in throughfall and 4.2-10.7 mg C L(-1) in stemflow, with striking differences among the various plots. Low concentrations were found in runoff (0.5-2.0 mg C L(-1)), showing that the export of DOC via running waters was limited. The seasonality of DOC in throughfall samples was evident, with the highest concentration in summer when biological activity is at a maximum, and minima in winter due to limited DOC production and leaching. Statistical analysis revealed that DOC had a close relationship with organic and total nitrogen, and with nutrient ions, and a negative correlation with precipitation amount. Forest type proved to be a major factor affecting DOC variability: concentration and, to a lesser extent, fluxes were lower in stands dominated by deciduous species. The character of evergreens, and the size and shape of their leaves and needles, which regulate the interception mechanism of dry deposition, are mainly responsible for this.  相似文献   

7.
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.  相似文献   

8.
9.
Understanding the exchange mechanism between stratosphere and troposphere is one of the most important concerns of meteorologists and climatologists for decades. Different methods are being adopted to study those mechanisms. One of those methods is the study upon the tropospheric concentration of conserve or passive entities with stratospheric origin. One of those passive entities is 7Be that is produced upon the incident of cosmic rays on light atmospheric nuclei in the stratosphere. The availability of 5 years observations of 7Be concentration in surface air in Tehran (35°41 N, 51°18 E) encouraged us to investigate meteorological condition effect on the surface concentration of 7Be. Also, the intention was to see if there was any intrusion of stratospheric air into the troposphere at the time of high surface concentration of 7Be and scavenging mechanism when the concentration was low. During the course of this study, it has been found that 7Be concentration is high whenever there is a jet stream over Tehran. Since high-level jet streams normally form near tropopause folding, it could be interpreted as a sign of the intrusion of stratospheric air into the troposphere. It was also found that high concentration of 7Be in the Tehran surface air in summer is associated with an upper ridge on 500 hPa surface located east of the city, and low concentration in winter is associated with an upper trough. The latter normally is seen whenever there is precipitation that suggests wet scavenging could be the reason for that observed low concentration.  相似文献   

10.
Soil organic carbon (SOC) has been assessed in three dimension (3D) in several studies, but little is known about the combined effects of land use and soil depth on SOC stocks in semi-arid areas. This paper investigates the 3D distribution of SOC to a depth of 1 m in a 4600-ha area in southeastern Iran with different land uses under the irrigated farming (IF), dry farming (DF), orchards (Or), range plants on the Gachsaran formation (RaG), and range plants on a quaternary formation (RaQ). Predictions were made using the artificial neural networks (ANNs), regression trees (RTs), and spline functions with auxiliary covariates derived from a digital elevation model (DEM), the Landsat 8 imagery, and land use types. Correlation analysis showed that the main predictors for SOC in the topsoil were covariates derived from the imagery; however, for the lower depths, covariates derived from both the DEM and imagery were important. ANNs showed more efficiency than did RTs in predicting SOC. The results showed that 3D distribution of SOC was significantly affected by land use types. SOC stocks of soils under Or and IF were significantly higher than those under DF, RaG, and RaQ. The SOC below 30 cm accounted for about 59% of the total soil stock. Results showed that depth functions combined with digital soil mapping techniques provide a promising approach to evaluate 3D SOC distribution under different land uses in semi-arid regions and could be used to assess changes in time to determine appropriate management strategies.  相似文献   

11.
Increasing consciousness about future sustainable agriculture and hazard free food production has lead organic farming to be a globally emerging alternative farm practice. We investigated the accumulation of air-borne heavy metals in edible parts of vegetables and in cultivated soil horizon in organic farming system in a low rain fall tropical region of India. The factorial design of whole experiment consisted of six vegetable crops (tomato, egg plant, spinach, amaranthus, carrot and radish) x two treatments (organic farming in open field and organic farming in glasshouse (OFG)) x seven independent harvest of each crop. The results indicated that except for Pb, atmospheric deposition of heavy metals increased consistently on time scale. Concentrations of heavy metals in cultivated soil horizon and in edible parts of open field grown vegetables increased over time and were significantly higher than those recorded in OFG plots. Increased contents of heavy metals in open field altered soil porosity, bulk density, water holding capacity, microbial biomass carbon, substrate-induced respiration, alkaline phosphatase and fluorescein diacetate hydrolytic activities. Vegetable concentrations of heavy metal appeared in the order Zn > Pb > Cu > Ni > Cd and were maximum in leaves (spinach and amaranths) followed by fruits (tomato and egg plant) and minimum in roots (carrot and radish). Multiple regression analysis indicated that the major contribution of most heavy metals to vegetable leaves was from atmosphere. For roots however, soil appeared to be equally important. The study suggests that if the present trend of atmospheric deposition is continued, it will lead to a destabilizing effect on this sustainable agricultural practice and will increase the dietary intake of toxic metals.  相似文献   

12.
The nitrogen (N) deposition fluxes were investigated in eight typical forest ecosystems along the North–South Transect of Eastern China (NSTEC; based on the ChinaFLUX network) by ion-exchange resin (IER) columns from May 2008 to April 2009. Our results demonstrated that the method of IER columns was both labor cost saving and reliable for measuring dissolved inorganic nitrogen (DIN) deposition at the remote forest stations. The deposition of DIN in the throughfall ranged from 1.3 to 29.5 kg N ha?1 a?1, increasing from north to south along NSTEC. The relatively high average ratio of ammonium to nitrate in deposition (1.83) indicated that the N deposition along the NSTEC in China mostly originated in farming and animal husbandry rather than in industry and vehicle activities. For seasonal variability, the DIN deposition showed a single peak in the growing season in the northern part of NSTEC, while, in the southern part, it exhibited double-peaks in the early spring and the mid-summer, respectively. On the annual scale, the DIN deposition variations of the eight sites could be mainly explained by precipitation and the distances from forest stations to provincial capital cities.  相似文献   

13.
The characteristics of three neighboring soils from the NE of Turkey were evaluated in order to elucidate the effect of different land-use management on the soil aggregate stability and microbial biomass in Galyan-Atasu dam watershed. Three experimental sites corresponding to three land uses were selected. The first site is a hazelnut orchard (agriculture), the second site is a forest dominated by mature coniferous trees, and the third site is grassland. Soil aggregate stability values for the 1–2-mm aggregates increased from forest (lowest) to agriculture (highest) in the current study. The percentage of clay was highest in agriculture soils with 33.57 %, and overall stability values increased according to soil clay content. The lower aggregate stability in the forest soils probably reflects the highly silty texture soils with 11.95 % compared to agriculture and grassland. However, in our study, there were no significant correlations between aggregate stability and organic C concentrations either in cultivated or forested soils. Aggregate stability depended more on the organic matter content when the organic matter content was greater than 50 or 60 mg g?1. Below that threshold, aggregate stability may be mainly related to clay content. Furthermore, the results confirmed that higher percentages of Cmic/Corg in agricultural soils are the result of more labile organic substrates maintained in the soil, allowing a higher microbial biomass C per unit of soil organic C. This work gives a better understanding of the relationships between land-use type and soil aggregation and allows to know the soil response to different types of management in humid environments.  相似文献   

14.
A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 μeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 μeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 μeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 μeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 μeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration.  相似文献   

15.
16.
This work investigated the effect of soil aquifer treatment (SAT) operation on the fluorescence characteristics of dissolved organic matter (DOM) fractions in soils through laboratory-scale soil columns with a 2-year operation. The resin adsorption technique (with XAD-8 and XAD-4 resins) was employed to characterize the dissolved organic matter in soils into five fractions, i.e., hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The synchronous fluorescence spectra revealed the presence of soluble microbial byproduct- and humic acid-like components and polycyclic aromatic compounds in DOM in soils, and SAT operation resulted in the enrichment of these fluorescent materials in all DOM fractions in the surface soil (0–12.5 cm). More importantly, the quantitative method of fluorescence regional integration was used in the analysis of excitation–emission matrix (EEM) spectra of DOM fractions in soils. The cumulative EEM volume (Φ T, n ) results showed that SAT operation led to the enrichment of more fluorescent components in HPO-A and TPI-A, as well as the dominance of less fluorescent components in HPO-N, TPI-N, and HPI in the bottom soil (75–150 cm). Total Φ T, n values, which were calculated as $ {\Phi_{{T,n}}} \times {\mathrm{DOC}} $ , suggested an accumulation of fluorescent organic matter in the upper 75 cm of soil as a consequence of SAT operation. The distribution of volumetric fluorescence among five regions (i.e., P i, n ) results revealed that SAT caused the increased content of humic-like fluorophores as well as the decreased content of protein-like fluorophores in both HPO-A and TPI-A in soils.  相似文献   

17.
Accumulation of Co, Cu, Cr, Mo, Ni, Pb and Zn was evaluated in a soil profile of an overland flow system used for the post-treatment of urban wastewater. A pilot version of the overland flow system received urban wastewater from five up-flow anaerobic filters filled with bamboo (Bambusa tuldoides) rings. The anaerobic effluent was applied as feed over 18 months at rates varying from 7 to 28 L min(-1), to a vegetated slope length covered with Tifton 85 (Cynodon) sp. grass. Soil and plant samples were collected in triplicate from the top to the bottom of the slope. In addition, the soils were sampled at the depths 0-20 and 20-40 cm. The metal concentrations found in the overall system were compared to those obtained in a control area located at the beginning of the slope onto which nothing was applied. A month of monitoring the urban wastewater of Limeira City (S?o Paulo State, Brazil) showed a drastic change in metals concentration due to the irregular discharge of industrial waste. This irregular discharge introduces Cr, Cu, Ni, Pb and Zn into the system used to treat domestic wastewater. The mass balance indicates the accumulation of metals in the soil and the translocation to the plants; also that they could be evapotranspirated, percolated and discharged.  相似文献   

18.
Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

19.
One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EFG) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EFG techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EFG technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.  相似文献   

20.
Soil erosion is the most important reason of sedimentation load of water reservoirs in the world. In Pakistan, Mangla dam is one of the most important water reservoirs used for the production of electricity and for the supply of water for irrigation purposes. However, the capacity of Mangla dam reservoir has reduced by more than 20% since its construction. This study highlights the impact of rainfall on soil erosion and consequently on sedimentation deposition in Mangla dam reservoir. Sedimentation, annual rainfall, and normal rainfall data of 39 years were used in this study. Shuttle Radar Topographic Mission data were used to calculate the total drainage area of the Mangla watershed region. The sedimentation data of Mangla reservoir from 1967 to 2005 were retrieved from Water and Power Development Authority in Pakistan. The meteorological observatories in the Mangla watershed region are identified. Annual rainfall data from 1967 to 2005 for the meteorological observatories in the Mangla watershed regions were retrieved from Pakistan Meteorological Department (PMD). In addition, normal rainfall data for the years 1949 to 1978 and for the years 1979 to 2008 were also retrieved from PMD. The impact of annual rainfall is observed on sedimentation load in Mangla dam. The correlation coefficient between annual rainfall and sedimentation load is 0.94. This study shows that with an increase in rainfall, the soil erosion of the area increases which subsequently is responsible for the increase in the rate of sedimentation load in Mangla dam. This study further demonstrates that better soil management can reduce the sedimentation load in the Mangla reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号