首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Soils support ecosystem functions such as plant growth and water quality because of certain physical, chemical, and biological properties. These properties have been studied at different spatial scales, including point scales to satisfy basic research needs, and regional scales to satisfy monitoring needs. Recently, soil property data for the entire USA have become available in the State Soil Geographic Data Base (STATSGO), which is appropriate for regional-scale research. We analyzed and created models of STATSGO data in this study to serve as a research tool, for example, for linking the soil to regional water quality monitoring data in our companion paper. Map units in STATSGO define geographic land areas by soil characteristics (SCs) of similar soil series. We selected 27 SCs that influenced water properties (in varying degrees), aggregated the layer and component SCs to map unit SCs, and used SCs to calculate relationships among map units. The relationships were defined by equations of conditional mean for the qth SC (SCq), while using the remaining 26 SCs as predictors. The relative standard errors for 22 of the 27 SCs were less than 10%, and less than 22% for the remaining five. We conclude that spatial extrapolation of SCs is feasible and the procedures are a first step toward extrapolating information across a region using SC-water property relationships. Although our procedure is for regional scale monitoring, it is also applicable to finer spatial scales commensurate with available soil data.  相似文献   

2.
Dissolved organic nitrogen (DON) has been hypothesized to play a major role in N cycling in a variety of ecosystems. Our aim was to assess the seasonal and concentration relationships between dissolved organic carbon (DOC), DON, and NO3- within 102 streams and 16 lakes within catchments of differing complexity situated in Wales. Further, we aimed to assess whether patterns of land use, soil type, and vegetation gave consistent trends in DON and dissolved inorganic nitrogen (DIN) relationships over a diverse range of catchments. Our results reinforce that DON constitutes a significant component of the total dissolved N pool typically representing 40 to 50% of the total N in streams and lakes but sometimes representing greater than 85% of the total dissolved N. Generally, the levels of DON were inversely correlated with the concentration of DIN. In contrast to DIN concentrations, which showed distinct seasonality, DON showed no consistent seasonal trend. We hypothesize that this reflects differences in the bioavailability of these two N types. The amount of DON, DOC, and DIN was significantly related to soil type with higher DON export from Histosol-dominated catchments in comparison with Spodosol-dominated watersheds. Vegetation cover also had a significant effect on DON concentrations independent of soil type with a nearly twofold decrease in DON export from forested catchments in comparison with nonforested watersheds. Due to the diversity in catchment DON behavior, we speculate that this will limit the adoption of DON as a broad-scale indicator of catchment condition for use in monitoring and assessment programs.  相似文献   

3.
ABSTRACT: Soil data comprise a basic input of SWAT (Soil and Water Assessment Tool) for a watershed application. For watersheds where site specific soil data are unavailable, the two U.S. Department of Agriculture (USDA) soil databases, the State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) databases, may be the best alternatives. Although it has been noted that SWAT models using the STATSGO and SSURGO data may give different simulation results for water, sediment, and agricultural chemical yields, information is scarce on the effects of using these two databases in predicting streamflows that are predominantly generated from melting snow in spring. The objective of this study was to assess the effects of using STATSGO versus SSURGO as an input for the SWAT model's simulation of the streamflows in the upper 45 percent of the Elm River watershed in eastern North Dakota. Designating the model as SWAT‐STATSGO when the STATSGO data were used and SWAT‐SSURGO when the SSURGO data were used, SWAT‐STATSGO and SWAT‐SSURGO were separately calibrated and validated using the observed daily streamflows. The results indicated that SWAT‐SSURGO provided an overall better prediction of the discharges than SWAT‐STATSGO, although both did a good and comparable job of predicting the high streamflows. However, SWAT‐STATSGO predicted the low streamflows more accurately and had a slightly better performance during the validation period. In addition, the discrepancies between the discharges predicted by these two SWAT models tended to be larger at upstream locations than at those farther downstream within the study area.  相似文献   

4.
Topographic Effects on Soil Organic Carbon in Louisiana Watersheds   总被引:2,自引:0,他引:2  
Terrestrial carbon storage is influenced by a number of environmental factors, among which topographic and geomorphological features are of special significance. This study was designed to examine the relationships of soil organic carbon (SOC) density to various terrain parameters and watershed characteristics across Louisiana, USA. A polygon data set of 484 watersheds and 12 river drainage basins for Louisiana was used to form the landscape units. SOC densities were calculated for each soil map unit using the State Soil Geographic (STATSGO) database. Average drainage densities and average slopes at watershed and basin scales were quantified with the 1:24 K Digital Elevation Models (DEM) data, and the Louisiana hydrographic water features. Correlation and regression analyses were performed to determine relationships among drainage density, slope, elevation, and SOC. The study found an average watershed drainage density of 1.6 km/km2 and an average watershed slope of 2.9 degrees in Louisiana. The results revealed that SOC density at both watershed and basin scales was closely related to drainage density, slope, and elevation. SOC density was positively correlated with watershed drainage density, but negatively correlated with watershed slope gradient and elevation. Regression models were developed for predicting SOC density at watershed and basin scales, obtaining regression coefficients (r 2) ranging from 0.43 to 0.83. The study showed that estimation of SOC at watershed and drainage basin scales combining DEM data can be a feasible approach to improve the understanding of the relationships among SOC, topographic, and geomorphological features.  相似文献   

5.
The capacity of riparian zones to serve as critical control locations for watershed nitrogen flux varies with site characteristics. Without a means to stratify riparian zones into different levels of ground water nitrate removal capacity, this variability will confound spatially explicit source-sink models of watershed nitrate flux and limit efforts to target riparian restoration and management. We examined the capability of SSURGO (1:15 840 Soil Survey Geographic database) map classifications (slope class, geomorphology, and/or hydric soil designation) to identify riparian sites with high capacity for ground water nitrate removal. The study focused on 100 randomly selected riparian locations in a variety of forested and glaciated settings within Rhode Island. Geomorphic settings included till, outwash, and organic/alluvial deposits. We defined riparian zones with "high ground water nitrate removal capacity" as field sites possessing both >10 m of hydric soil width and an absence of ground water surface seeps. SSURGO classification based on a combination of geomorphology and hydric soil status created two functionally distinct sets of riparian sites. More than 75% of riparian sites classified by SSURGO as organic/alluviumhydric or as outwash-hydric had field attributes that suggest a high capacity for ground water nitrate removal. In contrast, >85% of all till sites and nonhydric outwash sites had field characteristics that minimize the capacity for ground water nitrate removal. Comparing the STATSGO and SSURGO databases for a 64000-ha watershed, STATSGO grossly under-represented critical riparian features. We conclude that the SSURGO database can provide modelers and managers with important insights into riparian zone nitrogen removal potential.  相似文献   

6.
Regional reference sites: a method for assessing stream potentials   总被引:7,自引:0,他引:7  
Field assessments of impacted streams require a control or at least an unbiased estimate of attainable conditions. Control sites, such as upstream/downstream or wilderness sites, have proven inadequate for assessing attainable ecological conditions where the control streams differ naturally from the impacted streams to a considerable degree or where different disturbances exist than those being studied. Relatively undisturbed reference sites with watersheds in areas having the same land-surface form, soil, potential natural vegetation, and land use as are predominant in large, relatively homogeneous regions are suggested as alternative control sites. These areas are considered typical of the region and therefore the sites also are considered typical of the region because their watersheds exhibit all the terrestrial variables that make that region a region. The logical basis for developing regional reference sites lies in the ability to group watersheds and common stream types into regions by integrating available maps of terrestrial variables that influence streams. Relatively undisturbed reference sites can be selected from typical areas of the regions and from transition zones where one or two of the terrestrial variables are not the predominant one(s) of the region. These reference sites are useful for estimating attainable conditions, for evaluating temporal and spatial changes in ecological integrity, for classifying attainable uses of streams, and for setting biological and environmental criteria.  相似文献   

7.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

8.
9.
10.
Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.  相似文献   

11.
ABSTRACT: In the south-central interior of British Columbia, the summer and fall of 1987 were very dry. Streamflow was extremely low throughout the region, and an extended rainless period coincided with the onset of the winter dormant period. During a five-day rainless period from October 9 to October 13, which should have been a period of declining streamflow in all watersheds, 19 of 31 small forested watersheds having suitable natural flow record experienced increasing discharge. The data is reviewed and analyzed with an initial attempt made to explain the streamflow changes among the various watersheds quantitatively. The only explanation for the widespread increases in streamflow in the region during this dry period is that greatly reduced transpiration, as the vegetation went dormant, permitted increased volumes of water in the soil to drain into surface streams rapidly enough to be recorded as increased discharge in 61 percent of the study streams.  相似文献   

12.
We investigated whether fish assemblage structure in southern Appalachian streams differed with historical and contemporary forest cover. We compared fish assemblages in 2nd–4th order streams draining watersheds that had increased forest cover between 1950 and 1993 (i.e., reforesting watersheds). We sampled fish in 50 m reaches during August 2001 and calculated catch-per-unit-effort (CPUE) by taxonomic, distributional, trophic, reproductive, and thermal metrics. We assigned streams to reforestation categories based on cluster analysis of years 1950 and 1993 near-stream forest cover. The relationship between forest cover and assemblage structure was assessed using analysis of variance to identify differences in fish CPUE in five forest cover categories. Streams contained 23 fish species representing six families, and taxa richness ranged from 1 to 13 at 30 stream sites. Streams with relatively low near-stream forest cover were different from streams having moderate to high near-stream forest cover in 1950 and 1993. Fish assemblages in streams having the lowest amount of forest cover (53–75%) were characterized by higher cosmopolitan, brood hider, detritivore/herbivore, intermediate habitat breadths, run-pool dweller, and warm water tolerant fish CPUE compared to streams with higher riparian forest cover. Our results suggest that fish assemblage’s structural and functional diversity and/or richness may be lower in streams having lower recent or past riparian forest cover compared to assemblages in streams having a high degree of near-stream forest cover.  相似文献   

13.
The prediction accuracy of agricultural nonpoint source pollution models such as Soil and Water Assessment Tool (SWAT) depends on how well model input spatial parameters describe the characteristics of the watershed. The objective of this study was to assess the effects of different soil data resolutions on stream flow, sediment and nutrient predictions when used as input for SWAT. SWAT model predictions were compared for the two US Department of Agriculture soil databases with different resolution, namely the State Soil Geographic database (STATSGO) and the Soil Survey Geographic database (SSURGO). Same number of sub-basins was used in the watershed delineation. However, the number of HRUs generated when STATSGO and SSURGO soil data were used is 261 and 1301, respectively. SSURGO, with the highest spatial resolution, has 51 unique soil types in the watershed distributed in 1301 HRUs, while STATSGO has only three distributed in 261 HRUS. As a result of low resolution STATSGO assigns a single classification to areas that may have different soil types if SSURGO were used. SSURGO included Hydrologic Response Units (HRUs) with soil types that were generalized to one soil group in STATSGO. The difference in the number and size of HRUs also has an effect on sediment yield parameters (slope and slope length). Thus, as a result of the discrepancies in soil type and size of HRUs stream flow predicted was higher when SSURGO was used compared to STATSGO. SSURGO predicted less stream loading than STATSGO in terms of sediment and sediment-attached nutrients components, and vice versa for dissolved nutrients. When compared to mean daily measured flow, STATSGO performed better relative to SSURGO before calibration. SSURGO provided better results after calibration as evaluated by R(2) value (0.74 compared to 0.61 for STATSGO) and the Nash-Sutcliffe coefficient of Efficiency (NSE) values (0.70 and 0.61 for SSURGO and STATSGO, respectively) although both are in the same satisfactory range. Modelers need to weigh the benefits before selecting the type of data resolution they are going to use depending on the watershed size and level of accuracy required because more effort is required to prepare and calibrate the model when a fine resolution soil data is used.  相似文献   

14.
ABSTRACT: We examined hydrogeochemical records for a dozen watersheds in and near Kejimkujik National Park in southwestern Nova Scotia by relating stream ion concentrations and fluxes to atmospheric deposition, stream type (lake inlet versus outlet; brown versus clear water), and watershed type (catchment area, topography, soils, and dominant forest cover type). We found that fog and dry deposition make important contributions to S, N, Cl, H, Ca, Mg, K, and Na inputs into these watersheds. Seasalt chloride deposition from rain, snow, fog, and dry deposition equal total stream outputs on a region‐wide basis. Chloride outputs, however, differ among watersheds by a factor of about two, likely due to local differences in air flow and vegetational fog interception. We found that most of the incoming N is absorbed by the vegetation, as stream water NO3 and NH4+ are very low. Our results also show that the vegetation and the soils absorb about half of the incoming SO42. In comparison with other North American watersheds with similar forest vegetation, Ca outputs are low, while Mg and K outputs are similar to other regions. Soil exchangeable Ca and soil cation exchange capacity are also very low. We found that first‐order forest streams with no upstream lakes have a distinct seasonal pattern that neither corresponds with the seasonal pattern of atmospheric deposition, nor with the seasonal pattern of downstream lake outlets.  相似文献   

15.
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks (“habitat rehabilitation”). Fish and their habitats were sampled semiannually during 1–2 years before rehabilitation, 3–4 years after rehabilitation, and 10–11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means ≥40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.  相似文献   

16.
Through the Direct/Delayed Response Project (DDRP), the United States Environmental Protection Agency is attempting to assess the risk to surface waters from acidic deposition in three regions of the eastern United States: the Northeast Region, the Southern Blue Ridge Province, and the Mid-Appalachian Region. The central policy question being addressed by the DDRP is: Within the regions of concern, how many surface water systems (lakes, streams) will become acidic due to current or altered levels of acidic sulfur deposition, and on what time scales? The approach taken by the DDRP is to select a statistically representative set of watersheds in each region of concern and to project the future response of each watershed to various assumed levels of acidic deposition. The probability structure will then be used to extrapolate the watershed-specific results to each region. The data will be used also for statistical investigation of hypothesized relationships between current surface water chemistry and watershed characteristics. Because the needed terrestrial data base was not available, regional watershed surveys were conducted to meet the specific data needs of the DDRP. Maps (1∶24,000) of soils, vegetation, land use, depth to bedrock, and bedrock geology were made for each watershed. The soils were grouped into sampling classes based on their hypothesized response to acidic deposition. Randomized sampling of these classes provided regional means and variances of soil properties that can be applied to individual watersheds. Because of DDRP's need for consistency within and among regions, unique quality control/quality assurance activities were developed and implemented. After verification and validation, the DDRP data base will be made publicly available. This will be a unique and useful resource for others investigating watershed relationships on a regional scale. The results of these surveys and the conclusions of the DDRP will be presented in several future papers. The current paper gives an overview of the context, rationale, logistical considerations, and implementation of these surveys, with special emphasis on the field activities of watershed mapping and soil sampling. This discussion should be useful to those planning, implementing, and managing survey activities in support of regional assessments of other environmental concerns, who are likely to face similar choices and constraints.  相似文献   

17.
ABSTRACT: A survey of 61 headwater streams and their watersheds on Pennsylvania's Laurel Hill, an area of high hydrogen ion and sulfate deposition, was conducted in May and June 1983. Trout were absent from 12 or 20 percent of the streams. No fish were present in 10 streams. Thirty-three streams appeared to contain viable trout populations, 10 streams had other interferring cultural impacts and 6 streams had nonviable trout populations. Significant differences in water quality were noted among streams with and without fish. The streams having no fish as a group had significantly lower pH and alkalinity and higher dissolved aluminum than those with fish. Attempts were made to correlate soil type and geology with the presence or absence of trout. Watersheds with a major percentage of very stony land soil classifications always contained no trout or were culturally impacted. On the other hand, watersheds with a major percentage of Upshur (limestone derived) soils always supported trout. Watersheds with more than 30 percent Pocono Group bedrock supported trout in every case but two, while in every case but one, watersheds with more than 30 percent Pottsville Group bedrock did not support trout. Acid runoff episode data indicate severe transient acidification attributable to atmospheric deposition. It appears that a combination of very stony land, 30 percent Pottsville Group bedrock and high deposition of hydrogen ions and sulfate may result in transient acidification and absence of fish populations from headwater streams on Pennsylvania's Laurel Hill.  相似文献   

18.
Wigington, Parker J., Jr., Scott G. Leibowitz, Randy L. Comeleo, and Joseph L. Ebersole, 2012. Oregon Hydrologic Landscapes: A Classification Framework. Journal of the American Water Resources Association (JAWRA) 1‐20. DOI: 10.1111/jawr.12009 Abstract: There is a growing need for hydrologic classification systems that can provide a basis for broad‐scale assessments of the hydrologic functions of landscapes and watersheds and their responses to stressors such as climate change. We developed a hydrologic landscape (HL) classification approach that describes factors of climate‐watershed systems that control the hydrologic characteristics of watersheds. Our assessment units are incremental watersheds (i.e., headwater watersheds or areas draining directly into stream reaches). Major components of the classification include indices of annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. To evaluate the usefulness of our approach, we identified 30 rivers with long‐term streamflow‐gauging records and without major diversions and impoundments. We used statistical clustering to group the streams based on the shapes of their annual hydrographs. Comparison of the streamflow clusters and HL distributions within river basin clusters shows that the Oregon HL approach has the ability to provide insights about the expected hydrologic behavior of HLs and larger river basins. The Oregon HL approach has potential to be a useful framework for comparing hydrologic attributes of streams and rivers in the Pacific Northwest.  相似文献   

19.
Abstract: The purpose of this study was to validate the application of an invertebrate community index (ICI) to assess the biological integrity of urban streams. Validation involved comparing chemical and habitat data to ICI scores from 20 urban streams and four least‐impacted streams in the Choctawhatchee and Pea River watersheds located in Southeast Alabama. Chemical and habitat data were collected to support whether the ICI accurately predicts the health of the streams. A significant difference between urban and least‐impacted ICI scores, habitat evaluation scores, chemical variables, taxa richness, and Shannon‐Wiener diversity were observed when urban sites were compared with least‐impacted sites using Mann‐Whitney U‐test. Urban sites having low ICI scores, low species richness and diversity, and poor habitat showed greater impairment than least‐impacted sites. Cluster analysis of macroinvertebrate assemblages indicated two clusters. Significant differences between clusters in habitat evaluations, chemical parameters, and ICI scores showed that some urban sites were more degraded than other urban sites in the study. Differentiation between least‐impacted and urban sites indicated that the ICI provided valid biotic assessments. Therefore, this study validated that the ICI is capable of predicting the biological integrity of urban streams in the Choctawhatchee and Pea River watersheds.  相似文献   

20.
Headwater streams are the primary sources of water in a drainage network and serve as a critical hydrologic link between the surrounding landscape and larger, downstream surface waters. Many states, including North Carolina, regulate activity in and near headwater streams for the protection of water quality and aquatic resources. A fundamental tool for regulatory management is an accurate representation of streams on a map. Limited resources preclude field mapping every headwater stream and its origin across a large region. It is more practical to develop a model for headwater streams based on a sample of field data that can then be extrapolated to a larger area of interest. The North Carolina Division of Water Quality has developed a cost‐effective method for modeling and mapping the location, length, and flow classification (intermittent and perennial) of headwater streams. We used a multiple logistic regression approach that combined field data and terrain derivatives for watersheds located in the Triassic Basins ecoregion. Field data were collected using a standard methodology for identifying headwater streams and origins. Terrain derivatives were generated from digital elevation models interpolated from bare‐earth Light Detection and Range data. Model accuracies greater than 80% were achieved in classifying stream presence and absence, stream length and perennial stream length, but were not as consistent in predicting intermittent stream length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号