首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.  相似文献   

2.
Predicting dissolved phosphorus in runoff from manured field plots   总被引:2,自引:0,他引:2  
Dissolved inorganic P transport in runoff from agricultural soils is an environmental concern. Models are used to predict P transport but rarely simulate P in runoff from surface-applied manures. Using field-plot data, we tested a previously proposed model to predict manure P in runoff. We updated the model to include more data relating water to manure ratio to manure P released during water extractions. We verified that this update can predict P release from manure to rain using published data. We tested the updated model using field-plot and soil-box data from three manure runoff studies. The model accurately predicted runoff P for boxes, but underpredicted runoff P for plots. Underpredictions were caused by runoff to rain ratios used to distribute P into runoff or infiltration. We developed P distribution fractions from manure water extraction data to replace runoff to rain ratios. Calculating P distribution fractions requires knowing rainfall rate and times that runoff begins and rain stops. Using P distribution fractions gave accurate predictions of runoff P for soil boxes and field plots. We observed relationships between measured runoff to rain ratios and both P distribution fractions and a degree of error in original predictions, calculated as (measured runoff P/predicted runoff P). Using independent field-plot data, we verified that original underpredictions of manure runoff P can be improved by calculating P distribution fractions from measured runoff to rain ratios or adjusting runoff to rain ratios based on their degree of error. Future work should test the model at field or watershed scales and at longer time scales.  相似文献   

3.
Winter landspreading is an important part of manure management in the U.S. Upper Midwest. Although the practice is thought to lead to excessive P runoff losses, surprisingly little has been learned from field experiments or current water quality models. We captured knowledge gained from winter manure landspreading experiments by modifying a mechanistic snow ablation model to include manure. The physically based, modified model simulated the observed delay in snow cover disappearance and surface energy balance changes caused by application of the manure. Additional model simulations of surface energy balance estimates of radiation and turbulent fluxes showed that during intense melting events the manure on top of snow significantly reduced the energy available for melt of the snow underneath, slowing melt. The effect was most pronounced when snowmelt was driven by both relatively high solar radiation and turbulent heat fluxes. High absorbed shortwave radiation caused significant warming of the manure, which led to substantial losses in turbulent fluxes and longwave radiation. Simulations of snowmelt also showed that manure applications between 45 and 100 Mg ha(-1) significantly reduced peak snowmelt rates, in proportion to the manure applied. Lower snowmelt rates beneath manure may allow more infiltration of meltwater compared with bare snow. This infiltration and attenuated snowmelt runoff may partially mitigate the enhanced likelihood of P runoff from unincorporated winter-spread manure.  相似文献   

4.
Hillslope vegetated buffers are recommended to prevent water pollution from agricultural runoff. However, models to predict the efficacy of different grass buffer designs are lacking. The objective of this work was to develop and test a mechanistic model of coupled surface and subsurface flow and transport of bacteria and a conservative tracer on hillslopes. The testing should indicate what level of complexity and observation density might be needed to capture essential processes in the model. We combined the three-dimensional FEMWATER model of saturated-unsaturated subsurface flow with the Saint-Venant model for runoff. The model was tested with data on rainfall-induced fecal coliforms (FC) and bromide (Br) transport from manure applied at vegetated and bare 6-m long plots. The calibration of water retention parameters was unnecessary, and the same manure release parameters could be used both for simulations of Br and FC. Surface straining rates were similar for Br and bacteria. Simulations of Br and FC concentrations were least successful for the funnels closest to the source. This could be related to the finger-like flow of the manure from the strip along the bare slopes, to the transport of Br and FC with manure colloids that became strained at the grass slope, and to the presence of micro-ponds at the grassed slope. The two-dimensional model abstraction of the actual 3D transport worked well for flux-averaged concentrations. The model developed in this work is suitable to simulate surface and subsurface transport of agricultural contaminants on hillslopes and to evaluate efficiency of grass strip buffers, especially when lateral subsurface flow is important.  相似文献   

5.
Although water quality problems associated with agricultural nonpoint source (NPS) pollution have prompted the rapid and widespread adoption of a variety of so called "best management practices" (BMPs), there have been few realistic efforts to assess their combined effectiveness in reducing NPS pollution. This study used the Variable Source Loading Function (VSLF) model, a distributed watershed model, to simulate phosphorus (P) loading from an upstate New York dairy farm before and after the implementation of a suite of BMPs. With minimal calibration, the model calculates the dissolved P (DP) losses from impervious surfaces (e.g., barnyards), the plant/soil complex, field-applied manure, and loads associated with baseflow conditions. The simulated DP loads agreed well with measured loads for both the pre-BMP and post-BMP periods. More importantly, results showed that BMPs reduced DP loads by 35%, which is over half of the expected reduction if all manure was removed from the watershed, i.e., approximately 50% reduction. The model results indicate that had no BMPs been installed DP loads would be approximately 37% greater than observed at the watershed outlet. The most effective BMPs were those that disassociated pollutant loading areas from areas prone to generating runoff, i.e., hydrologically sensitive areas. By contrast, attempts to reduce P content in manure were somewhat less effective. This study demonstrates that a combination of distributed, mechanistic modeling and long-term monitoring provides better insights into the effectiveness of water quality protection efforts than either individually.  相似文献   

6.
Land applications of manure from confined animal systems and direct deposit by grazing animals are both major sources of nutrients in streams. The objectives of this study were to determine the effects of P-based manure applications on total suspended solids (TSS) and nutrient losses from dairy manures and poultry litter surface applied to pasturelands and to compare the nutrient losses transported to the edge of the field during overland flow events. Two sets of plots were established: one set for the study of in-field release and another set for the study of edge-of-the-field nutrient transport. Release plots were constructed at three pastureland sites (previous poultry litter applications, previous liquid dairy manure application, and no prior manure application) and received four manure treatments (turkey [Meleagris gallopavo] litter, liquid dairy manure, standard cowpies, and none). Pasture plots with a history of previous manure applications released higher concentrations of TSS and higher percentages of total P (TP) in the particulate form. Transport plots were developed on pasture with no prior manure application. The average flow-weighted TP concentrations were highest in runoff samples from the plots treated with cowpies (1.57 mg L(-1)). Reducing excess P in dairy cow diets and surface applying manure to the land using P-based management practices did not increase N concentrations in runoff. This study found that nutrients are most transportable from cowpies; thus a buffer zone between pastureland and streams or other appropriate management practices are necessary to reduce nutrient losses to waterbodies.  相似文献   

7.
Leachate metal pollutant concentrations produced from different asphalt and concrete pavement surfacing materials were measured under controlled laboratory conditions. The results showed that, in general, the concentrations of most metal pollutants were below the reporting limits. However, dissolved chromium was detected in leachate from concrete (but not asphalt) specimens and more strongly in the early-time leachate samples. As the leaching continued, the concentration of Cr decreased to below or close to the reporting limit. The source of the chromium in concrete pavement was found to be cement. The concentration of total Cr produced from leachate of different cement coming from different sources that was purchased from retail distributors ranged from 124 to 641 μg/L. This result indicates that the potential leachability of dissolved Cr from concrete pavement materials can be reduced through source control. The results also showed that the leachability of dissolved Cr in hardened pavement materials was substantially reduced. For example, the concentration of dissolved Cr measured in actual highway runoff was found to be much lower than the Cr concentration produced from leachate of both open and dense graded concrete pavement specimens under controlled laboratory study. It was concluded that pavement materials are not the source of pollutants of concern in roadway runoff; rather most pollutants in roadway surface runoff are generated from other road-use or land-use sources, or from (wet or dry) atmospheric deposition.  相似文献   

8.
Watershed models often estimate annual nitrogen (N) or phosphorus (P) pollutant loads in rural areas with export coefficient (EC) (kg/ha/yr) values based on land cover, and in urban areas as the product of spatially uniform event mean concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint source (NPS) pollutant loading has more spatial complexity due to watershed variation in runoff likelihood and buffering likelihood along surface and subsurface pathways, which can be represented in a contributing area dispersal area (CADA) NPS model. This research develops a CADA NPS model to simulate how watershed properties of elevation, land cover, and soils upslope and downslope of each watershed pixel influence nutrient loading. The model uses both surface and subsurface runoff indices (RI), and surface and subsurface buffer indices (BI), to quantify the runoff and buffering likelihood for each watershed pixel, and generate maps of weighted EC and EMC values that identify NPS pollutant loading hotspots. The research illustrates how CADA NPS model maps and pixel loading values are sensitive to the spatial resolution and accuracy of elevation and land cover data, and model predictions can represent the lower and upper bounds of NPS loading. The model provides managers with a tool to rapidly visualize, rank, and investigate likely areas of high nutrient export.  相似文献   

9.
Vadas, Peter A., William E. Jokela, Dory H. Franklin, and Dinku M. Endale, 2011. The Effect of Rain and Runoff When Assessing Timing of Manure Application and Dissolved Phosphorus Loss in Runoff. Journal of the American Water Resources Association (JAWRA) 47(4):877‐886. DOI: 10.1111/j.1752‐1688.2011.00561.x Abstract: A significant pathway of nonpoint source, agricultural phosphorus (P) transport is surface runoff, to which surface‐applied manure can contribute. Increasing the time between manure application and the first rain‐runoff event is proposed as a practice to reduce runoff P loss. Few studies have investigated this aspect of manure P loss in runoff, with mixed results. Studies observing a decrease in runoff P as the time between application and the first rain‐runoff attribute the decrease to adsorption of manure P by soil and manure drying effects, but do not consider the effect of storm hydrology on runoff P. We ran the manure P runoff model SurPhos with data from nine published studies that investigated the effect of time between application and the first rain event on runoff P. SurPhos successfully simulated the experimental conditions in the studies and predicted runoff P loss. Simulation results suggest soil adsorption of manure P is not the dominant mechanism that will significantly decrease manure P availability to runoff. Rather, regardless of when the first rain‐runoff event occurs, storm hydrology will significantly affect manure P loss in runoff. Although model scenarios indicate that increasing the time between manure application and the first rain‐runoff event will typically decrease P loss in runoff, runoff P could be equal to or greater 30 days after application than the day after application if a more intense rain and runoff event occurs at the latter date.  相似文献   

10.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

11.
Application of manure to frozen and/or snow-covered soils of high-latitude, continental climate regions is associated with enhanced P losses to surface water bodies, but the practice is an essential part of most animal farming systems in these regions. Field experiments of the fates of winter-applied manure P are so difficult as to make them essentially impractical, so a mechanistic, modeling approach is required. Central to a mechanistic understanding of manure P snow-melt runoff is knowledge of snowpack disappearance (ablation) as affected by manure application. The objective of this study was to learn how solid manure applied to snow-covered fields modulates the surface energy balance and thereby snow cover ablation. Manure landspreading experiments were conducted in Arlington, WI during the winters of 1998 and 1999. Solid dairy manure was applied on top of snow at a rate of 70 Mg ha(-1) in 1998, and at 45 and 100 Mg ha(-1) in 1999. Results showed that the manure retarded melt, in proportion to the rate applied. The low-albedo manure increased absorption of shortwave radiation compared with snow, but this extra energy was lost in longwave radiation and turbulent flux of sensible and latent heat. These losses result in significant attenuation of melt peaks, retarding snowmelt. Lower snowmelt rates beneath manure may allow more infiltration of meltwater compared with bare snow. This infiltration and attenuated snowmelt runoff may partially mitigate the enhanced likelihood of P runoff from unincorporated winter-spread manure.  相似文献   

12.
Effect of mineral and manure phosphorus sources on runoff phosphorus   总被引:3,自引:0,他引:3  
Concern over nonpoint-source phosphorus (P) losses from agricultural lands to surface waters has resulted in scrutiny of factors affecting P loss potential. A rainfall simulation study was conducted to quantify the effects of alternative P sources (dairy manure, poultry manure, swine slurry, and diammonium phosphate), application methods, and initial soil P concentrations on runoff P losses from three acidic soils (Buchanan-Hartleton, Hagerstown, and Lewbeach). Low P (12 to 26 mg kg(-1) Mehlich-3 P) and high P (396 to 415 mg kg(-1) Mehlich-3 P) members of each soil were amended with 100 kg total P ha(-1) from each of the four P sources either by surface application or mixing, and subjected to simulated rainfall (70 mm h(-1) to produce 30 min runoff). Phosphorus losses from fertilizer and manure applied to the soil surface differed significantly by source, with dissolved reactive phosphorus (DRP) accounting for 64% of total phosphorus (TP) (versus 9% for the unamended soils). For manure amended soils, these losses were linearly related to water-soluble P concentration of manure (r2 = 0.86 for DRP, r2 = 0.78 for TP). Mixing the P sources into the soil significantly decreased P losses relative to surface P application, such that DRP losses from amended, mixed soils were not significantly different from the unamended soil. Results of this study can be applied to site assessment indices to quantify the potential for P loss from recently manured soils.  相似文献   

13.
Computer models are a rapid, inexpensive way to identify agricultural areas with a high potential for P loss, but most models poorly simulate dissolved P release from surface-applied manures to runoff. We developed a simple approach to predict dissolved P release from manures based on observed trends in laboratory extraction of P in dairy, poultry, and swine manures with water over different water to manure ratios. The approach predicted well dissolved inorganic (R2 = 0.70) and organic (R2 = 0.73) P release from manures and composts for data from leaching experiments with simulated rainfall. However, it predicted poorly (R2 = 0.18) dissolved inorganic P concentrations in runoff from soil boxes where dairy, poultry, and swine manures had been surface-applied and subjected to simulated rainfall. Multiplying predicted runoff P concentrations by the ratio of runoff to rainfall improved the relationship between measured and predicted runoff P concentrations, but runoff P was still overpredicted for dairy and swine manures. We attributed this overprediction to immediate infiltration of dissolved P in the freely draining water of dairy and swine manure slurries upon their application to soils. Further multiplying predicted runoff dissolved inorganic P concentrations by 0.35 for dairy and 0.60 for swine manures resulted in an accurate prediction of dissolved P in runoff (R2 = 0.71). The ability of our relatively simple approach to predict dissolved inorganic P concentrations in runoff from surface-applied manures indicates its potential to improve water quality models, but field testing of the approach is necessary first.  相似文献   

14.
Response of turf and quality of water runoff to manure and fertilizer   总被引:1,自引:0,他引:1  
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.  相似文献   

15.
ABSTRACT: Many coastal states are facing increasing urban growth along their coast lines. The growth has caused urban non-point source nitrogen runoff to be a major contributor to coastal and estuarine enrichment. Water resource managers are responsible for evaluating the impacts from point and non-point sources in developed watersheds and developing strategies to manage future growth. Non-point source models provide an effective approach to these management challenges. The Agricultural Non-Point Source Model (AGNPS) permits the incorporation of important spatial information (soils, landuse, topography, hydrology) in simulating surface hydrology and nitrogen non-point source runoff. The AGNPS model was adapted for developed coastal watersheds by deriving urban coefficients that reflect urban landuse classes and the amount of impervious surface area. Popperdam Creek watershed was used for model parameter development and model calibration. Four additional watersheds were simulated to validate the model. The model predictions of the peak flow and total nitrogen concentrations were close to the field measurements for the five sub-basins simulated. Measured peak flow varied by 30 fold among the sub-basins. The average simulated peak flow was within 14 percent of the average measured peak flow. Measured total nitrogen loads varied over an order of magnitude among the sub-basins yet error between the measured and simulated loads for a given sub-basin averaged 5 percent. The AGNPS model provided better estimates of nitrogen loads than widely used regression methods. The spatial distribution of important watershed characteristics influenced the impacts of urban landuse and projecting future residential expansion on runoff, sediment and nitrogen yields. The AGNPS model provides a useful tool to incorporate these characteristics, evaluate their importance, and evaluate fieldscale to watershed-scale urban impacts.  相似文献   

16.
Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.  相似文献   

17.
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.  相似文献   

18.
ABSTRACT: Model predictions of the relatively simple soil compartment model SESOIL are compared with those of the more data-intensive terrestrial ecosystem hydrology model AGTEHM. Comparisons were performed using data from a deciduous forest stand watershed, a grassland watershed, and two agricultural field plots. Good agreement was obtained between model predictions for annual values of infiltration, evapotranspiration, surface runoff, and groundwater runoff. SESOIL model predictions also compare well with empirical measurements at the forest stand and the grassland watersheds.  相似文献   

19.
To prevent residues of veterinary medicinal products (VMPs) from contaminating surface waters and ground water, an environmental impact assessment is required before a new product is allowed on the market. Physically based simulation models are advocated for the calculation of predicted environmental concentrations at higher tiers of the assessment process. However, the validation status of potentially useful models is poor for VMP transport. The objective of this study was to evaluate the dual-permeability model MACRO for simulation of transport of sulfonamide antibiotics in surface runoff and soil. Special focus was on effects of solute application in liquid manure, which may alter the hydraulic properties at the soil surface. To this end we used data from a microplot runoff experiment and a field experiment, both conducted on the same clay loam soil prone to preferential flow. Results showed that the model could accurately simulate concentrations of sulfadimidine and the nonreactive tracer bromide in runoff and in soil from the microplot experiments. The use of posterior parameter distributions from calibrations using the microplot data resulted in poor simulations for the field data of total sulfadimidine losses. The poor results may be due to surface runoff being instantly transferred off the field in the model, whereas in reality re-infiltration may occur. The effects of the manure application were reflected in smaller total and micropore hydraulic conductivities compared with the application in aqueous solution. These effects could easily be accounted for in regulatory modeling.  相似文献   

20.
Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the concurrent release of pathogens and manure particles during rainfall events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号