首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biotic ligand model (BLM) was developed to predict nickel toxicity, affecting root growth of barley (Hordeum vulgare), in nutrient solutions. The extent to which Ca(2+), Mg(2+), Na(+), K(+) ions and pH each influenced nickel toxicity was determined. Higher activities of Mg(2+) linearly increased the 4d EC50 Ni (2+) , while Ca(2+), Na(+), K(+) and H(+) activities did not significantly influence Ni(2+) toxicity. Stability constants for the binding of Ni(2+) and Mg(2+) to the biotic ligand were obtained: logK(NiBL)=5.27 and logK(MgBL)=3.47. Further, it was calculated that on average 57% of the biotic ligand sites needed to be occupied by nickel to induce 50% root growth inhibition. Auto-validation of the BLM indicated that predicted EC50s differed from the observed EC50s by a factor of less than 2, indicating that the BLM concept may also be used to predict metal toxicity to terrestrial plants.  相似文献   

2.
3.
A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF2(1+) and AlF(2+) complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future.  相似文献   

4.
Environmental Science and Pollution Research - The use of biochar in soil remediation is a promising method to deal with metal contamination. In the present study, the influence of biochar...  相似文献   

5.
Municipal solid wastes (MSW) are unavoidable sources of environmental pollution. Improper disposal of municipal waste results in the leaching of toxic metals and organic chemicals, which can contaminate the surface and ground water leading to serious health hazard. In this study, the toxic effects of the leachate prepared from municipal solid waste samples were examined in root meristem cells of barley (Hordeum vulgare L.) at various stages of cell cycle, i.e., G1, S, and G2. Seeds of barley were exposed to 2.5, 5, and 10 % of leachates in soil and aqueous media in 48 h at different cell cycle stages. The physicochemical data of the present study revealed that municipal solid waste leachate contains high amount of heavy metals, which significantly affected growth and physiological activities of barley. Significant inhibition in hypocotyl length, germination, and mitotic index were observed at all concentration of leachate treatment. Induction of chromosomal aberrations (CA’s) and micronuclei (MN) formation were also observed with different concentrations of leachate treatment at 7, 17, and 27 h of presoaking durations, which falls in G1, S, and G2 phase of the cell cycle, respectively. Also, exposure of leachate at S phase of the cell cycle had significant effects in barley through chromosomal aberration and micronuclei formation.  相似文献   

6.
The influence of soil properties on the bioavailability and toxicity of Co to barley (Hordeum vulgare L.) root elongation was investigated. Ten soils varying widely in soil properties were amended with seven doses of CoCl2. Soil properties greatly influenced the expression of Co toxicity. The effective concentration of added Co causing 50% inhibition (EC50) ranged from 45 to 863 mg kg−1, representing almost 20-fold variation among soils. Furthermore, we investigated Co toxicity in relation to Co concentrations and free Co2+ activity in soil solution. The EC50 values showed variation among soils of 17- and 29-fold, based on the Co concentration in soil solution and free Co2+ activity, respectively. Single regressions were carried out between Co toxicity threshold values and selected soil properties. Models obtained showed that soil effective cation exchange capacity (eCEC) and exchangeable calcium were the most consistent single predictors of the EC50 values based on soil added Co.  相似文献   

7.
Luo XS  Li LZ  Zhou DM 《Chemosphere》2008,73(3):401-406
The extent to which calcium, magnesium, sodium, potassium and hydrogen ions independently mitigate Cu rhizotoxicity to wheat (Triticumaestivum) in nutrient solutions was examined. Increasing activities of Ca(2+) and Mg(2+) but not Na(+), K(+) and H(+) linearly increased the 2 d EC50 (as Cu(2+) activity), supporting the concept that some cations can compete with Cu(2+) for binding the active sites at the terrestrial organism-solution interface (i.e., the biotic ligand, BL). According to the biotic ligand model (BLM) concept, the conditional stability constants for the binding of Cu(2+), Ca(2+) and Mg(2+) to the BL were derived from the toxicity data. They were 6.28, 2.43 and 3.34 for logK(CuBL), logK(CaBL) and logK(MgBL), respectively. It was calculated that on average 43.6% of BL sites need to be occupied by Cu(2+) to induce 50% root growth inhibition. Using the estimated parameters, a BLM was successfully developed to predict Cu toxicity for wheat as a function of solution characteristics.  相似文献   

8.
Background, Aim and Scope Numerous herbicides and xenobiotic organic pollutants are detoxified in plants to glutathione conjugates. Following this enzyme catalyzed reaction, xenobiotic GS-conjugates are thought to be compartmentalized in the vacuole of plant cells. In the present study, evidence is presented for long range transport of these conjugates in plants, rather than storage in the vacuole. To our knowledge this is the first report about the unidirectional long range transport of xenobiotic conjugates in plants and the exudation of a glutathione conjugate from the root tips. This could mean that plants possess an excretion system for unwanted compounds which give them similar advantages as animals. Materials and Methods: Barley plants (Hordeum vulgare L. cv. Cherie) were grown in Petri dishes soaked with tap water in the greenhouse. - Fluorescence Microscopy. Monobromo- and Monochlorobimane, two model xenobiotics that are conjugated rapidly in plant cells with glutathione, hereby forming fluorescent metabolites, were used as markers for our experiments. Their transport in the root could be followed sensitively with very good temporal and spatial resolution. Roots of barley seedlings were cut under water and the end at which xenobiotics were applied was fixed in an aperture with a thin latex foil and transferred into a drop of water on a cover slide. The cover slide was fixed in a measuring chamber on the stage of an inverse fluorescence microscope (Zeiss Axiovert 100). - Spectrometric enzyme assay. Glutathione S-transferase (GST) activity was determined in the protein extracts following established methods. Aliquots of the enzyme extract were incubated with 1-chloro-2,4-dinitrobenzene (CDNB), or monochlorobimane. Controls lacking enzyme or GSH were measured. - Pitman chamber experiments. Ten days old barley plants or detached roots were inserted into special incubation chambers, either complete with tips or decapitated, as well as 10 days old barley plants without root tips. Compartment A was filled with a transport medium and GSH conjugate or L-cysteine conjugate. Compartments B and C contained sugar free media. Samples were taken from the root tip containing compartment C and the amount of conjugate transported was determined spectro-photometrically. Results: The transport in roots is unidirectional towards the root tips and leads to exsudation of the conjugates at rates between 20 and 200 nmol min-1. The microscopic studies have been complemented by transport studies in small root chambers and spectroscopic quantification of dinitrobenzene-conjugates. The latter experiments confirm the microscopic studies. Furthermore it was shown that glutathione conjugates are transported at higher rates than cysteine conjugates, despite of their higher molecular weights. This observation points to the existence of glutathione specific carriers and a specific role of glutathione in the root. Discussion: It can be assumed that long distance transport of glutathione conjugates within the plant proceeds like GSH or amino acid transport in both, phloem and xylem. The high velocity of this translocation of the GS-X is indicative of an active transport. For free glutathione, a rapid transport-system is essential because an accumulation of GSH in the root tip inhibits further uptake of sulfur. Taking into account that all described MRP transporters and also the GSH plasmalemma ATPases have side activities for glutathione derivatives and conjugates, co-transport of these xenobiotic metabolites seems credible. - On the other hand, when GS-B was applied to the root tips from the outside, no significant uptake was observed. Thus it can be concluded that only those conjugates can be transported in the xylem which are formed inside the root apex. Having left the root once, there seems to be no return into the root vessels, probably because of a lack of inward directed transporters. Conclusions: Plants seem to possess the capability to store glutathione conjugates in the vacuole, but under certain conditions, these metabolites might also undergo long range transport, predominantly into the plant root. The transport seems dependent on specific carriers and is unidirectional, this means that xenobiotic conjugates from the rhizosphere are not taken up again. The exudation of xenobiotic metabolites offers an opportunity to avoid the accumulation of such compounds in the plant. Recommendations and Perspectives: The role of glutathione and glutathione related metabolites in the rhizosphere has not been studied in any detail, and only scattered data are available on interactions between the plant root and rhizosphere bacteria that encounter such conjugates. The final fate of these compounds in the root zone has also not been addressed so far. It will be interesting to study effects of the exuded metabolites on the biology of rhizosphere bacteria and fungi.  相似文献   

9.
Two modern fungicides, a strobilurin, azoxystrobin (AZO), and a triazole, epoxiconazole (EPO), applied as foliar spray on spring barley (Hordeum vulgare L. cv. Scarlett) 3 days prior to fumigation with injurious doses of ozone (150-250 ppb; 5 days; 7 h/day) induced a 50-60% protection against ozone injury on leaves. Fungicide treatments of barley plants at growth stage (GS) 32 significantly increased the total leaf soluble protein content. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX) and glutathione reductase (GR) were increased by both fungicides at maximal rates of 16, 75, 51 and 144%, respectively. Guiacol-peroxidase (POX) activity was elevated by 50-110% only in AZO treated plants, while this effect was lacking after treatments with EPO. This coincided with elevated levels of hydrogen peroxide (H2O2) only in EPO and not in AZO treated plants. The enhancement of the plant antioxidative system by the two fungicides significantly and considerably reduced the level of superoxide (O2*-) in leaves. Fumigation of barley plants for 4 days with non-injurious ozone doses (120-150 ppb, 7 h/day) markedly and immediately stimulated O2*- accumulation in leaves, while H2O2 was increased only after the third day of fumigation. Therefore, O2*- itself or as precursor of even more toxic oxyradicals appears to be more indicative for ozone-induced leaf damage than H2O2. Ozone also induced significant increases in the activity of antioxidant enzymes (SOD, POX and CAT) after 2 days of fumigation in fungicide untreated plants, while after 4 days of fumigation these enzymes declined to a level lower than in unfumigated plants, due to the oxidative degradation of leaf proteins. This is the first report demonstrating the marked enhancement of plant antioxidative enzymes and the enhanced scavenging of potentially harmful O2*- by fungicides as a mechanism of protecting plants against noxious oxidative stress from the environment. The antioxidant effect of modern fungicides widely used in intense cereal production in many countries represents an important factor when evaluating potential air pollution effects in agriculture.  相似文献   

10.

Silicon-based fertilizers and soil amendments can have direct and indirect positive influences on cultivated plants. The solid forms of Si-based substances, the most widespread in use, are efficient only at high application rates due to their low level of solubility. Several types of Si-based substances such as fumed silica, slags from the iron and steel industry, modified slags, and a Si-rich product were tested using barley and pea as silicon accumulative and non-accumulative plants, respectively, at two application rates. The plants were grown under toxic concentrations of heavy metals in a greenhouse. Si-rich materials high in water-soluble Si had a positive effect at both the low and high application rates, and for both plant species. This type of substance can be regarded as Si fertilizer, demonstrating greater efficiency at a low application rate and lessened efficiency at a high application rate for protection of the cultivated plants against accumulation of the heavy metals.

  相似文献   

11.
Environmental Science and Pollution Research - It is increasingly being recognized that biotic ligand models (BLMs) can successfully predict the toxicity of divalent metals toward aquatic biota...  相似文献   

12.
Wu FB  Chen F  Wei K  Zhang GP 《Chemosphere》2004,57(6):447-454
Hydroponic experiment was carried out to study the effect of three Cd levels on glutathione (GSH), free amino acids (FAA), and ascorbic acid (ASA) concentration in the different tissues of 2 barley cultivars with different Cd tolerance. Cadmium concentration in both roots and shoots increased with external Cd level, while biomass and ASA concentration declined, and Wumaoliuling, a Cd-sensitive genotype was more affected than ZAU 3, a Cd-tolerant genotype. The effect of Cd on GSH concentration was dose- and time-dependent. In the 5 d exposure, root GSH concentration increased in 0.5 microM Cd treatment compared with control, but decreased significantly in 5 microM Cd treatment, irrespective of genotypes. However, in the 10 d exposure, GSH concentration in all plant tissues decreased with increasing Cd levels in the culture medium, and Wumaoliuling was much more affected than ZAU 3. Cadmium treatment greatly altered FAA concentration and composition in plants. The effect of Cd on glutathione (Glu) concentration in roots varied with genotypes. ZAU 3 showed a steady increase in root Glu concentration in both 0.5 and 5 microM Cd treatments, while Wumaoliuling was decreased by 38.0% in 5 microM Cd treatment, compared with the control. The results indicate that GSH and ASA are attributed to Cd tolerance in barley plants, and the relative less reduction in GSH concentration in ZAU 3 under Cd stress relative to the control may account for its higher Cd tolerance.  相似文献   

13.
Environmental Science and Pollution Research - To evaluate the ecosystem health of Qin River, a main tributary of the Yellow River, a planktonic index of biotic integrity (P-IBI) that includes...  相似文献   

14.
15.
Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.  相似文献   

16.
Barley (Hordeum vulgare L.) was used to assess plant-availability, tissue-concentration and genotoxicity of mercury from the solid waste deposits of a chloralkali plant. Seeds of H. vulgare, presoaked in distilled water, were allowed to germinate and grow on agricultural soil mixed with solid waste containing 2550+/-339 mg Hg kg(-1) at different proportions (0.75, 1.5, 2.5 and 5%). Plants raised from germinating seeds on uncontaminated agricultural soil served as controls. On day 7, germination counts and seedling heights were recorded. The concentration of mercury in soil, and plant tissue (dry weight) were determined at different stages of plant growth from day 7 till maturity and harvest. The availability of mercury from the soil was assessed by extracting mercury at a range of pH values (2-6) and by chemical methods. The embryonic shoots excised at 36 h of germination were subjected to cytological analysis to determine mitotic index and frequency of mitoses with chromosomal aberrations. The pollen mother cells from anthers of young M1-spikes were analysed to score meiotic aberrations. Subsequently, the pollen fertility and seed set were determined. Furthermore, M2-seedlings were analysed for chlorophyll-deficient mutations. The cytogenetic analysis revealed the effects of mercury on the mitotic and meiotic chromosomes which were significantly correlated with soil-mercury. The bioconcentration of mercury in aerial tissues decreased with the age of the plant. Roots, in particular, were found to concentrate most of the mercury taken up by the plant. At the time of harvest, the bioconcentration of mercury in straw was at a minimum. The accumulation of mercury in grain, which was significant, did not increase with the increase in concentration of mercury in soil but maintained a plateau, indicating a restriction of transport of mercury through the phloem. The unique advantage with the use of Hordeum assay is that, besides assessing the germline toxicity, the assay takes into account the possible contamination of the agricultural food-chain.  相似文献   

17.
In the terrestrial environment, standardized protocols are available for measuring the exposure and effects of contaminants to invertebrates, but none currently exist for vertebrates. In an effort to address this, we proposed that developing lizard embryos may be used as a terrestrial vertebrate model. Lizard eggs may be particularly susceptible to soil contamination and in ovo exposure may affect hatchling size, mortality, as well as thyroid function. Toxicant-induced perturbations of thyroid function resulting from in ovo chemical exposure may result in toxicity during the critical perinatal period in reptiles. Fertilized Eastern fence lizard (Sceloporus undulatus) eggs were placed in cadmium (Cd)-spiked expanded perlite (0, 1.48, 14.8, 148, 1480, 14 800 μg Cd/g, nominal concentrations), artificially incubated at 28 °C, and examined daily for mortality. Whole lizard hatchlings as well as failed hatches were homogenized in ethanol and the homogenate was divided for Cd body residue analysis and thyroid hormone (triiodothyronine (T3) and thyroxine (T4)) analyses. Acute mortality was observed in the two highest doses (1480 and 14 800 μg Cd/g). Cadmium body residues showed a higher internal concentration with increasing exposure concentration indicating uptake of Cd. There was a decrease in T3:T4 ratio at the highest surviving dose (148 μg Cd/g), however, there were no differences observed in hatchling size measured as weight and snout-vent length, or in whole body thyroid hormone levels. In summary, this study has shown Cd amended to a solid phase representing soil (perlite) can traverse the thin, parchment-like shell membrane of the fence lizard egg and bioaccumulate in lizard embryos. We believe this study is a good first step in investigating and evaluating this species for use as a model.  相似文献   

18.
Results are presented from the UN/ECE ICP Vegetation (International Cooperative Programme on effects of air pollution on natural vegetation and crops) experiments in which ozone(O(3))-resistant (NC-R) and -sensitive (NC-S) clones of white clover (Trifolium repens cv. Regal) were exposed to ambient O(3) episodes at 14 sites in eight European countries in 1996, 1997 and 1998. The plants were grown according to a standard protocol, and the forage was harvested every 28 days for 4-5 months per year by excision 7 cm above the soil surface. Biomass ratio (NC-S/NC-R) was related to the climatic and pollutant conditions at each site using multiple linear regression (MLR) and artificial neural networks (ANNs). Twenty-one input parameters [e.g. AOT40, 7-h mean O(3) concentration, daylight vapour pressure deficit (VPD), daily maximum temperature] were considered individually and in combination with the aim of developing a model with high r(2) and simple structure that could be used to predict biomass change in white clover. MLR models were generally more complex, and performed less well for unseen data than non-linear ANN models. The ANN model with the best performance had five inputs with an r(2) value of 0.84 for the training data, and 0.71 for previously unseen data. Two inputs to the model described the O(3) conditions (AOT40 and 24-h mean for O(3)), two described temperature (daylight mean and 24-h mean temperature), and the fifth input appeared to be differentiating between semi-urban and rural sites (NO concentration at 17:00). Neither VPD nor harvest interval was an important component of the model. The model predicted that a 5% reduction in biomass ratio was associated with AOT40s in the range 0.9-1.7 ppm x h (microl l(-1) h) accumulated over 28 days, with plants being most sensitive in conditions of low NO(x), medium-range temperature, and high 24-h mean O(3) concentration.  相似文献   

19.
Passive sampling technology has been considered as a promising tool to measure the concentration of environmental contaminants. With this technology, sampling rate (Rs) is an important parameter. However, as experimental methods employed to obtain the Rs value of a given compound were time-consuming, laborious, and expensive. A cost-effective method for deriving Rs is urgent. In addition, considering the great dependence of Rs value on water matrix properties, the laboratory measured Rs may not be a good alternative for field Rs. Thus, obtaining the field Rs is very necessary. In this study, a multiparameter quantitative structure-property relationship (QSPR) model was constructed for predicting the field Rs of 91 polar to semi-polar organic compounds. The determination coefficient (R2Train), leave-one-out cross-validated coefficient (Q2LOO), bootstrap coefficient (Q2BOOT), and root mean square error (RMSETrain) of the training set were 0.772, 0.706, 0.769, and 0.230, respectively, while the external validation coefficient (Q2EXT) and RMSEEXT of the validation set were 0.641 and 0.253, respectively. According to the acceptable criteria (Q2 > 0.600, R2 > 0.700), the model had good robustness, goodness-of-fit, and predictive performances. Therefore, we could use the model to fill the data gap for substances within the applicability domain on their missing Rs value.  相似文献   

20.
A livestock odor dispersion model (LODM) was developed to predict odor concentration and odor frequency using routine hourly meteorological data input. The odor concentrations predicted by the LODM were compared with the results obtained from other commercial models (Industrial Source Complex Short-Term model, version 3, CALPUFF) to evaluate its appropriateness. Two sets of field odor plume measurement data were used to validate the model. The model-predicted mean odor concentrations and odor frequencies were compared with those measured. Results show that this model has good performance for predicting odor concentrations and odor frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号