共查询到20条相似文献,搜索用时 62 毫秒
1.
前置反硝化生物脱氮工艺实现亚硝酸氮积累的试验研究 总被引:2,自引:0,他引:2
通过试验实现了前置反硝化工艺亚硝酸氮的积累,从温度、pH值、游离氨(FA)浓度、污泥龄、溶解氧(DO)浓度等几个影响亚硝酸氮积累的主要因素逐一分析.采用中试装置在常温条件下处理实际生活污水.在试验开始阶段DO浓度维持在0.5mg/L,出现了亚硝酸氮的积累,随后提高DO浓度到1.5 mg/L以上,亚硝酸氮积累现象随之消失,最后又降低系统中的DO浓度到0.5 mg/L附近,亚硝酸氮积累现象再次出现,由此得出DO是实现亚硝酸氮积累的关键因素.试验发现有效地控制DO浓度在0.5 mg/L可实现亚硝酸氮比较持久稳定的积累. 相似文献
2.
采用盘片总面积为1.8m^2的附着生长型的单级生物转盘生物反应器,证实了同步硝化与反硝化的存在;通过提高NH4^+-N的含量,实现亚硝酸盐的积累和在有氧条件下的同步亚硝酸型脱氮。 相似文献
3.
4.
生物流化床在焦化废水治理中的应用 总被引:13,自引:0,他引:13
采用厌氧 缺氧 好氧工艺流程,以生物膜作为厌氧、缺氧反应器,循环式生物流化床作为好氧反应器进行了焦化废水治理中试应用研究。应用结果表明,上述工艺流程用于焦化废水治理是可行的。当系统进水CODCr浓度小于1200mg/L,系统水力停留时间为44h时,出水CODCr小于250mg/L;较高的进水NH3 N浓度可严重影响NH3 N去除,但对CODCr去除几乎无影响 相似文献
5.
采用内循环生物流化床反应器处理模拟高浓度氨氮废水,以确定其对处理高浓度氨氮废水的可行性,同时对试验条件进行了优化。结果研究表明:控制温度为(31±1)℃,利用反应器自身流化所携带溶解的空气,反应器内DO值可维持在1.5~2.5 mg/L,调节pH为8.0~8.5。经过42 d的污泥驯化适应时期,进水氨氮(NH4+-N)浓度由50 mg/L提高到300 mg/L。由于流化床采用填料载体微生物膜与活性污泥双重作用,同时载体呈流化状态,接触均匀,有巨大的比表面积,可以使床内保持高浓度的生物量,从而达到高效快速的传质效果。在HRT由开始的16 h缩短到8 h的条件下,氨氮(NH4+-N)的去除率达到90%以上,亚硝氮(NO2--N)的积累率达到75%。且在以后30 d的稳定运行阶段,氨氮(NH4+-N)去除率和亚硝氮(NO2--N)积累率均保持稳定。同时反应器最后出水水质澄清,无需二沉池及污泥处理。 相似文献
6.
内循环生物流化床处理丙烯酸废水的试验 总被引:8,自引:1,他引:8
介绍内循环三相生物流化床处理丙烯酸废水的中试研究。当进水COD为710—992mg/L时,平均去除容积负荷NV=4.0kgCOD/(m3·d),污泥负荷NS=1.6kgCOD/(kgVSS·d);进水COD为1277—2276mp/L时,NV=6.8kgCOD/(m3·d),Ns=2.8kgCOD/(kgVSS·d);氧利用率约17%。同时对流化床出水进行了后处理试验,提出了丙烯酸废水的治理方案。 相似文献
7.
反应器分区提高生物接触氧化硝化性能的研究 总被引:6,自引:0,他引:6
为克服普通生物接触氧化反应器中因硝化菌与有机物降解菌的竞争劣势而影响硝化活性的问题,将反应器简单分隔,通过微生物生态调控,以提高硝化性能.结果表明,在BOD、TN负荷分别为1.0、0.19kg/(m3·d)的中等负荷条件下,反应器分区后硝化率提高33%.反应器两区分别形成以降解有机物和硝化为主的功能区.分区式接触氧化反应器后区段的硝化速率是单区式反应器的2.8~4.5倍,亚硝酸菌密度提高1个数量级.分区式反应器在0.26kg/(m3·d)的高TN负荷条件下运行时,由于硝化细菌活性降低导致硝化率降低,而在0.08kg/(m3·d)的低负荷条件下运行时,后区段过低的氨氮浓度限制了硝化能力的发挥,因此分区式反应器宜在中等负荷下运行. 相似文献
8.
HRT对亚硝酸型硝化反应器处理“中老龄”垃圾渗滤液的影响研究 总被引:1,自引:0,他引:1
通过水力停留时间对亚硝酸氮积累的影响研究发现,在HRT相对亚硝酸菌的增殖富足的条件下,体系内的碱度是影响亚硝酸氮积累的主要因素。24h连续监测表明,针对“中老龄”垃圾渗滤液这一特定水质,将HRT设在4.5d为宜。 相似文献
9.
10.
通过改变内循环生物流化床的启动水质,提高N/C组成以强化流化床后期的硝化作用.结果表明,高N/C和低进水COD强化启动后处理生活污水,在HRT为2h时,可以同时高效去除COD和氨氮,氨氮的平均去除率为74%.耗氧速率试验表明,强化启动后,流化床中生物膜的异养菌活性大幅度降低,氨氧化细菌活性明显提高,硝化细菌活性变化不大.对反应系统微生物醌进行的跟踪分析表明,强化启动后,生物膜中的硝化细菌数量明显增加,微生物种群的分布均匀性变化较小,以革兰氏阴性菌为主.扫描电镜观察显示,低N/C启动条件下,生物膜厚且致密,异养菌所占比例高;高N/C启动条件有利于硝化细菌的生长,生物膜相对稀薄. 相似文献
11.
Experimental study of nitrite accumulation in predenitrification biological nitrogen removal process
Xuelei Wu Lunqiang Chen Yongzhen Peng Yayi Wang Pu Wang 《Frontiers of Environmental Science & Engineering in China》2008,2(2):236-240
The effect of dissolved oxygen (DO) concentration on nitrite accumulation was investigated in a pilot-scale pre-denitrification
process at room temperature for 100 days. In the first 10 days, due to the instability of the system, the DO concentration
fluctuated between 1.0 and 2.0 mg/L. In the next 14 days, the DO concentration was kept at 0.5 mg/L and nitrite accumulation
occurred, with the average nitrite accumulation rate at 91%. From the 25th day, the DO concentration was increased to 2.0
mg/L to destroy the nitrite accumulation, but nitrite accumulation rate was still as high as 90%. From the 38th day the nitrite
accumulation rate decreased to 15%–30% linearly. From the 50th day, DO concentration was decreased to 0.5 mg/L to resume nitrite
accumulation. Until the 83rd day the nitrite accumulation rate began to increase to 80%. Dissolved oxygen was the main cause
of nitrite accumulation, taking into account other factors such as pH, free ammonia concentration, temperature, and sludge
retention time. Because of the different affinity for oxygen between nitrite oxidizing bacteria and ammonia oxidizing bacteria
when DO concentration was kept at 0.5 mg/L, nitrite accumulation occurred.
__________
Translated from Environmental Science, 2006, 27(12): 2472–2476 [译自: 环境科学] 相似文献
12.
生物流化床去除水中腐殖酸的动力学模式 总被引:2,自引:0,他引:2
对腐殖酸的吸附机理作了论述。在Monod方程基础上,结合生物量、世代时间及停留时间之间的关系,推导出稳态条件下腐殖酸(HA)的降解动力学模式ss0=11+a1s0+a2θ。利用非线性最小二乘法,对动力学模式中的待定参数a1、a2进行了优化估计,得出a1=0.0171,a2=0.079。以实验数据对该动力学模式加以验证,结果令人满意 相似文献
13.
新型沸石复合填料生物流化床的填料为悬浮填料与沸石的有机组合体,该填料表面粗糙比表面积为711~1185m2/m3,是悬浮填料的2~3倍,且在污水处理中,挂膜容易,生物相丰富,且不易脱落;该新型填料生物膜致密,沸石内部的孔穴中长有较多的原生物,有利于氨氮的转化.实验结果表明,当流化床深度处理生活污水处于稳定状态时,出水CODCr浓度为15.2~28.7mg/L,去除率为48%~84.5%;出水NH4+-N浓度≤2mg/L,去除率92%~98%.处理后的生活污水达到发电厂循环冷却水水质指标. 相似文献
14.
生物好氧流化床废水处理技术研究进展 总被引:20,自引:0,他引:20
介绍生物好氧流化床废水处理技术的早期发展,阐述影响其处理效果的几种重要因素并说明其应用领域,指出了存在的问题和未来的研究方向。 相似文献
15.
16.
17.
介绍一种曝气生物流化床的基本原理及特点,制作了总有效容积为1.5m3的曝气生物流化床(ABFB)中试设备,流化介质为合成高分子多孔材料,其物理性能为:持水量25倍、比表面积≥200m2/g、含氮量6.72%,载体带有-NH2、-COOH、-OH、环氧基等活性基团可与微生物结合而固定化微生物,载体中生物量平均为28g/L(H2O),故具有很高的处理效率.对平均值为COD 3450mg/L、NH4+-N 451mg/L、挥发酚为177 mg/L的煤气化废水,经过ABFB处理后,其处理水中COD 57.7mg/L、NH4+-N 0.285mg/L、挥发酚0.434mg/L,其运行效果优于曝气生物滤池(BAF)、接触氧化、活性炭流化床.ABFB具有运行稳定、抗冲击负荷强的特点,是一种先进的水处理技术. 相似文献
18.
Cd~(2+) removal from wastewater by sulfate reducing bacteria with an anaerobic fluidized bed reactor
Ma Xiaohang Hua Yaoxi Jiang Feng Institute of Microbiology of Zhejiang Province Hangzhou China Liu Jian Environmental Protection Institute of Zhejiang Province Hangzhou China Ye Xieming Metallurgical Institute of Zheji 《环境科学学报(英文版)》1997,(3)
Cd2+removalfromwastewaterbysulfatereducingbacteriawithananaerobicfluidizedbedreactorMaXiaohang,HuaYaoxi,JiangFengInstituteofM... 相似文献
19.
Yubo CUI Hongbo LIU Chunxue BAI 《Frontiers of Environmental Science & Engineering in China》2008,2(3):349-353
A new biological nitrogen removal process, which is named herein “The circulating fluidized bed bioreactor (CFBBR)”, was developed
for simultaneous removal of nitrogen and organic matter. This process was composed of an anaerobic bed (Riser), aerobic bed
(Downer) and connecting device. Influent and nitrified liquid from the aerobic bed enters the anaerobic bed from the bottom
of the anaerobic bed, completing the removal of nitrogen and organic matter. The system performance under the conditions of
different inflow loadings and nitrified liquid recirculation rates ranging from 200% to 600% was examined. From a technical
and economic point of view, the optimum nitrified liquid recirculation ratewas 400%. With a shortest total retention time
of 2.5 h (0.8 h in the anaerobic bed and 1.5 h in the aerobic bed) and a nitrified liquid recirculation rate of 400% based
on the influent flow rate, the average removal efficiencies of total nitrogen (TN) and soluble chemical oxygen demand (SCOD)
were found to be 88% and 95%, respectively. The average effluent concentrations of TN and SCOD were 3.5 mg/L and 16 mg/L,
respectively. The volatile suspended solid (VSS) concentration, nitrification rate and denitrification rate in the system
were less than 1.0 g/L, 0.026-0.1 g NH4
+-N/g VSS·d, and 0.016–0.074 g NOx
−-N/g VSS·d, respectively.
__________
Translated from Environmental Engineering, 2007, 25(6): 2, 7–10 [译自: 环境工程] 相似文献