首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

The investigation of municipal solid waste (MSW) treatment in China is rare due to its sensitivity and difficulty in terms of access. We chose Beijing, the capital of China, as an example to identify the characteristics of MSW landfill treatments using a 2-month investigation with 20 participants. MSW landfill treatments account for nearly 70% of the annual MSW disposal in Beijing; the landfill processes are equipped with many kinds of technologies and consume a large amount of energy and produce a variety of contaminants. The cover method (the most obvious difference in landfill tamping) mainly includes high-density polyethylene (HDPE) geomembranes with loess and soil alone (i.e., loess or sandy soil). We investigated the actual conditions of landfills and collected data on leachate and landfill gas (LFG) emissions and energy consumption during 2009–2011. The results indicated that the cover method employed by landfills was related to treatment quantity, operation, and especially landfill location. Early large-scale landfills located in plains were covered with HDPE geomembranes, and newly built landfills covered with soil tended to be equipped with HDPE covers. Using HDPE cover also contributed greatly to LFG production due to its impermeability but had no remarkable effect on leachate yield reduction due to the dry climate in Beijing. The potential was reinforced by the potentials of decrement and reuse. The disposal method of LFG can be optimized, and the power generated by the LFG process can meet the landfill demand. The gray water recycled from the leachate could be used in the landfill process.

  相似文献   

2.
污泥经预处理达到入场标准后与生活垃圾混合填埋是我国现阶段污泥处理的主要方式。由于污泥与生活垃圾特性差异较大,会影响渗滤液物理、化学、生物特性,进而对填埋场渗滤液导排系统产生不利影响。通过柱实验对比了污泥与生活垃圾混填前后产生的渗滤液水质变化,结果表明:污泥与生活垃圾混填后渗滤液中颗粒物浓度及大颗粒物占比均有显著提升;采用生石灰对污泥预处理提高了污泥自身有机质(VFAs等)的释放速率;8%的生石灰预处理污泥(10%混合比例)掺加量会提高生活垃圾产生的渗滤液中Ca2+浓度31.6%。通过分析可知,结合填埋场导排系统堵塞的影响因素有微细颗粒物沉淀、微生物膜生长及钙基化合物沉积,从减缓填埋场导排系统堵塞、延长填埋场使用年限的角度出发,污泥宜单独分区填埋,生石灰预处理污泥不宜与生活垃圾混填。  相似文献   

3.
以重庆某非规范填埋场为例,针对西南地区已封场非规范垃圾填埋场的稳定化进程进行了分析。按照场地布局选取4个采样点,在垃圾体上进行钻孔取样,分析不同深度的垃圾样pH值、有机质、含水率、生物可降解度以及垃圾样浸出液和填埋气组成以及各个指标随着填埋深度的变化规律,确定不同深度垃圾体的稳定化程度。结果表明,场内垃圾已呈现矿化垃圾特征;有机质、BDM、浸出液COD以及填埋气CH4含量等4个指标与填埋深度均较好地符合一级降解反应,可以预测垃圾体稳定化临界填埋深度。根据有机质、BDM、浸出液COD以及填埋气CH4含量等4个指标与填埋深度一级降解反应函数预测临界稳定化深度为15 m,与实测值判定的稳定化填埋深度相一致性。在对非规范垃圾填埋场场地利用过程中,需要先对未稳定的上层垃圾进行清理,并在已稳定的底层垃圾体上充填其他稳定介质后利用该地块。  相似文献   

4.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   

5.
Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.  相似文献   

6.
In Europe, the European Union Landfill Directive aims to reduce the negative environmental impacts of landfilling. This is mainly to be achieved by reducing the quantity of organic matter deposited, through measures such as the separate collection and recycling of the organic waste stream or pretreatment of residual wastes before landfilling. Other than incineration or other thermal processes, mechanical biological treatment is playing an increasingly important role. This study was conducted to seek the benefits of municipal solid waste (MSW) pretreatment, as well as the differences in methane production from the landfilling of untreated and mechanically/biologically treated (MBT) MSW using GasSim simulation. Results demonstrated that methane production rates vary significantly among waste fractions. Those that contribute most to methane generation (organic material and potentially reusable or recyclable material) could be targeted and treated before landfilling. The statistic relationship from the first phase of the study indicated that to match the increasingly stringent landfill waste organic content allowance, local councils should prioritize the reduction/sorting of certain targeted fractions, such as paper, card, green waste, and other putrescibles from MSW. Moreover, mechanical treatment alone produces organic-rich waste called mechanically sorted organic residues (MSORs), which can be viewed as an organic content concentration process. Mechanically and biologically pretreated waste, on the other hand, differs significantly from untreated MSW and MSORs. This work demonstrated that if efficient mechanical-biological treatment is used, considerable reductions in biological activity, landfill gas production, and energy content/total organic carbon could be achieved. Using GasSim, reductions in methane production of >74% have been simulated if a 90% organic content reduction can be achieved during biological treatment on MSORs. A 50-60% organic content reduction by following biological treatment can turn MSOR properties only into normal MSW equivalent though considerably less volume.  相似文献   

7.
Comparison of aerobic and anaerobic biotreatment of municipal solid waste   总被引:4,自引:0,他引:4  
To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   

8.
Ham SY  Kim YJ  Lee DH 《Chemosphere》2008,70(9):1685-1693
To investigate the leaching characteristic of persistent organic pollutants (POPs), such as non-ortho and mono-ortho substituted chlorobiphebyls (dioxin-like PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/DFs), in leachate from municipal solid waste (MSW) landfill sites containing incineration residues, raw leachate samples were collected twice from 12 selected MSW landfill sites. The samples were divided into their liquid and solid phases using GF/B (pore size 1.0 microm), and the concentrations of POPs then determined. The concentrations of PCDDs/DFs ranged from 0.65 to 5.88 pg-TEQ/l (average 2.86 pg-TEQ/l), and those of dioxin-like PCBs from 0.05 to 0.32 pg-TEQ/l (average 0.18 pg-TEQ/l). The major congeners of leached PCDDs/DFs and dioxin-like PCBs in liquid and solid phases were OCDD (about 60%), 2,3',4,4',5-PeCBs (about 30%), and 2,3,4,4',5-PeCBs (about 54%). The relationship between landfill age and the leaching concentration of PCDDs/DFs, and effects of dissolved organic carbon (DOC) on the leaching of PCDDs/DFs are also discussed. Finally, a leaching prediction model of PCDDs/DFs from MSW landfills has been suggested using parameters, such as hydrophobic neutral organic carbons, total dissolved solid, and the ratio of non-biodegradable wastes in landfill sites.  相似文献   

9.
王前  杨帆  徐期勇 《环境工程学报》2017,11(9):5262-5266
我国垃圾焚烧快速发展,其中炉渣作为主要焚烧副产物产量巨大,目前仍以进入生活垃圾填埋场进行填埋处置为主。为探究炉渣加入对填埋场土工膜结垢性质的影响,设置对照组A(新鲜渗滤液)、实验组B(渗滤液通过炉渣)、空白组C(超纯水)3组实验。结果表明,B组结垢现象比A组更明显,C组未出现结垢现象。炉渣的加入导致渗滤液中含钙量由2 407 mg·L-1提升到5 701 mg·L-1,第20天时,新鲜渗滤液中土工膜增加质量为0.02 g·cm-2,而炉渣渗滤液中土工膜增加质量达到0.05 g·cm-2。钙离子与填埋气中二氧化碳接触,加速了土工膜结垢现象的产生。同时,二氧化碳消耗量结果表明炉渣与生活垃圾混填导致土工膜结垢反应速率先加快后减慢。结果表明,炉渣进入填埋场加剧了填埋场土工膜堵塞的风险。  相似文献   

10.
Well testing procedures, such as the Tier 3 methodology specified in the U.S. Code of Federal Regulations (CFR) Subtitle D, are commonly used for directly estimating landfill gas (LFG) emissions at municipal solid waste (MSW) landfills. Similar procedures are also used to estimate LFG generation rates for the design of LFG-to-energy projects. These methodologies assume that the LFG generation rate equals the extraction rate of a test gas well within its radius of influence (ROI). The ROI is defined as the distance from the extraction well at which the induced pressure drop is immeasurable by some standard of precision. Based on fluid dynamic principles, Tier 3 and similar methodologies are demonstrated to be incapable of providing reliable estimates of the LFG generation rate. These tests may either over- or underestimate the LFG generation rate depending on the precision with which the ROI is determined, but they will only coincidentally produce an estimate that accurately represents the actual LFG generation rate. Fluid dynamic principles dictate that the actual LFG generation rate can only be estimated if the pneumatic properties of the refuse and cover materials as well as the excess pressure in the refuse caused by LFG generation are known or can be estimated.  相似文献   

11.
耿震  胡昌平 《污染防治技术》2007,20(6):117-119,128
介绍了常熟垃圾焚烧飞灰安全填埋工程的设计,包括飞灰预处理系统、填埋库结构、防渗和封场设计以及渗沥液处理等。结合工程设计实践,探讨了飞灰安全填埋场的设计技术和设计原则。  相似文献   

12.
A performance-based method for evaluating methane (CH4) oxidation as the best available control technology (BACT) for passive management of landfill gas (LFG) was applied at a municipal solid waste (MSW) landfill in central Washington, USA, to predict when conditions for functional stability with respect to LFG management would be expected. The permitted final cover design at the subject landfill is an all-soil evapotranspirative (ET) cover system. Using a model, a correlation between CH4 loading flux and oxidation was developed for the specific ET cover design. Under Washington’s regulations, a MSW landfill is functionally stable when it does not present a threat to human health or the environment (HHE) at the relevant point of exposure (POE), which was conservatively established as the cover surface. Approaches for modeling LFG migration and CH4 oxidation are discussed, along with comparisons between CH4 oxidation and biodegradation of non-CH4 organic compounds (NMOCs). The modeled oxidation capacity of the ET cover design is 15 g/m2/day under average climatic conditions at the site, with 100% oxidation expected on an annual average basis for fluxes up to 8 g/m2/day. This translates to a sitewide CH4 generation rate of about 260 m3/hr, which represents the functional stability target for allowing transition to cover oxidation as the BACT (subject to completion of a confirmation monitoring program). It is recognized that less than 100% oxidation might occur periodically if climate and/or cover conditions do not precisely match the model, but that residual emissions during such events would be de minimis in comparison with published limit values. Accordingly, it is also noted that nonzero net emissions may not represent a threat to HHE at a POE (i.e., a target flux between 8 and 15 g/m2/day might be appropriate for functional stability) depending on the site reuse plan and distance to potential receptors.

Implications: This study provides a scientifically defensible method for estimating when methane oxidation in landfill cover soils may represent the best available control technology for residual landfill gas (LFG) emissions. This should help operators and regulators agree on the process of safely eliminating active LFG controls in favor of passive control measures once LFG generation exhibits asymptotic trend behavior below the oxidation capacity of the soil. It also helps illustrate the potential benefits of evolving landfill designs to include all-soil vegetated evapotranspirative (ET) covers that meet sustainability objectives as well as regulatory performance objectives for infiltration control.  相似文献   


13.
Abstract

To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   

14.
生物反应器填埋的沉降加速效应   总被引:1,自引:0,他引:1  
通过实验室填埋柱模拟实验,研究了生物反应器填埋操作方式对填埋层沉降的影响。结果表明:与传统卫生填埋方式相比,回灌经厌氧生物处理后渗滤液的生物反应器填埋方式能够加速填埋层的沉降,140 d内沉降提高比例达10%以上。我国填埋垃圾高含水率、高易腐有机物含量的特性,使得其填埋层的次沉降系数高于文献值。填埋垃圾有机物降解量及其引起的垃圾水分排出量与填埋层沉降有显著相关性,表明有机物降解是引起填埋层沉降的重要因素,也是造成生物反应器填埋与传统卫生填埋方式初期沉降差异的主要原因。  相似文献   

15.
Dissolved organic matter and estrogenic potential of landfill leachate   总被引:1,自引:0,他引:1  
Lü F  Zhang H  Chang CH  Lee DJ  He PJ  Shao LM  Su A 《Chemosphere》2008,72(9):1381-1386
The estrogenic potentials of leachate samples collected at Laogang Sanitary Landfill in Shanghai, China were measured together with the associated dissolved organic matter (DOM) in leachate samples. Over 99% of the DOM in fresh leachate was removed upon 3-7 years of landfill, leaving only DOM with strong fluorescent activity. Anoxic or aerobic treatment of landfill leachate can further degrade DOM of MW<300 Da and transform those with fluorescent activity of MW>10(5) Da to those of 2000-10(5) Da. Neither landfilling nor storage in anoxic pond effectively removed estrogenic potential of leachate. Fractionation test revealed that residual organic matters of MW 3000-14000 Da and of <600 Da with high UV254 contributed most of the estrogenic activities in leachate. Aerobic SBR treatment considerably reduced the estrogenic potential of these organic matters in leachate.  相似文献   

16.
ABSTRACT

The increase in solid waste generation has been a major contributor to the amount of Greenhouse gases (GHGs) present in the atmosphere. To some extent, a great chunk of these GHGs in the atmosphere is from landfill. This study assesses two theoretical models (LandGEM and Afvalzorg models) to estimate the amount of landfill gas (LFG) emitted from Thohoyandou landfill site. Also, the LFGcost Web model was used to estimate the cost and benefits of the implementation of an LFG utilization technology. The Thohoyandou landfill started operations in the year 2005 and it is proposed to reach its peak at approximately in the year 2026. The LandGEM calculates the mass of landfill gas emission using methane generation capacity, mass of deposited waste, methane generation constant and methane generation rate. Meanwhile, the Afvalzorg model determines the LFG emissions using the Methane correction factor, yearly waste mass disposal, waste composition, Degradation Organic Carbon, methane generation rate constant, LFG recovery efficiency. The study findings indicate that the methane (CH4) and carbon dioxide (CO2) emitted from the landfill estimated from LandGEM will peak in the year 2026 with values of 3517 Mg/year and 9649 Mg/year, respectively. Results from the Afvalzorg model show that CH4 emission will peak in the year 2026 (3336 Mg/year). The LandGEM model showed that the total LFG, CH4 and CO2 emitted from the landfill between 2005 and 2040 are 293239.3 Mg/year, 78325.7 Mg/year and 214908.6 Mg/year, respectively. The simulation from the Afvalzorg model found that the CH4 emitted from the years 2005– 2040 is 74302 Mg/year. The implementation of an LFG utilization technology was economically feasible from consideration of the sales of electricity generated and Certified Emission Reductions (CER) (carbon credits).  相似文献   

17.
This paper analyzes the characterization of energy consumption and contaminant emissions from a municipal solid waste (MSW) treatment system that comprises transfer station, landfill site, combustion plant, composting plant, dejecta treatment station, and an integrated MSW treatment plant. The consumed energy and energy medium materials were integrated under comprehensive energy consumption (CEC) for comparison. Among typical MSW disposal methods such as combustion, composting, and landfilling, landfilling has the minimum CEC value. Installing an integrated treatment plant is the recommended MSW management method because of its lower CEC. Furthermore, this method is used to ensure process centralization. In landfill sites, a positive linear correlation was observed between the CEC and contaminant removal ratios when emitted pollutants have a certain weight coefficient. The process should utilize the minimum CEC value of 5.3702 kgce/t MSW and consider energy consumption, energy recovery, MSW components, and the equivalent of carbon dioxide emissions.  相似文献   

18.
白泥对填埋场垃圾降解的影响实验研究   总被引:1,自引:0,他引:1  
在4个相同的密封聚乙烯塑料罐中,分别装填相同组分和重量的青岛市居民区的生活垃圾,并且在4个罐中按不同比例添加白泥,与垃圾混合均匀。实验模拟填埋场的环境条件。定期监测4个罐渗滤液的水质变化,分析比较白泥的添加及添加量的多少对渗滤液的衰减的影响。实验结果表明,白泥的添加能够向反应系统提供一定数量的碱度,可以防止反应系统因出现酸过度累积而受到抑制,在一定程度上加快了垃圾的降解进程。这不仅对于减轻渗滤液处理设施的负荷、加速填埋场的稳定化起着积极作用,而且可以为白泥的资源化利用提供一个可行的途径。  相似文献   

19.
光电芬顿氧化法深度处理垃圾渗滤液研究   总被引:6,自引:1,他引:5  
采用光电芬顿氧化法对北京市某垃圾填埋场已经生化处理后的垃圾渗滤液进行深度处理,分别考察了电流强度和铁的不同价态等因素对渗滤液总有机碳(TOC)、化学需氧量(COD)以及色度去除效果的影响,并对阳极氧化、电芬顿和光电芬顿不同反应过程进行了对比。通过分析渗滤液UV-Vis光谱(200~500 nm)变化和渗滤液中有机污染物的分子量变化,发现光电芬顿反应可以明显改善渗滤液生化性。深入研究了反应过程中铁价态的变化规律。试验结果发现,以高比表面积的活性炭纤维(ACF)为阴极的光电芬顿反应可以有效降解垃圾渗滤液,在pH为3,Fe2+ 浓度为1 mmol/L,电流为0.5 A,O2通入量为250 mL/min条件下降解360 min,垃圾渗滤液TOC和COD去除率分别达到78.9%和62.8%,色度完全去除。  相似文献   

20.
MSW(城市固体废物)生物反应器型填埋是一种较新颖的方法。在系统分析现有填埋方法优缺点的基础上,对其加以改进,将强制通风好氧和渗滤液循环2种方式有机地结合在一起,构建了MSW好氧生物反应器。考察了NH3、CH4、CO2、pH和温度等因素,并监测分析了渗滤液中的COD、BOD5、Zn2+、NH4+和NO3-等指标,旨在研究其中垃圾的降解及渗滤液中COD、BOD5、Zn2+、NH4+和NO3-的去除情况,探讨该生物反应器对垃圾和渗滤液相关参数的作用机理。结果表明,该反应器对渗滤液中COD、BOD5、NO3-的去除率分别达到96.34%、94.58%和99.9%,对其中的Zn2+也有较好的脱除效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号