首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究含硫气输送管道全管径断裂后的失效影响,提出管道泄漏后硫化氢扩散浓度的计算方法。将管道泄漏过程等效为多个瞬时泄漏气团等时间间隔的连续释放,考虑管道压力变化、风速对泄漏气团的质量、喷射高度的影响,基于高斯烟团模型,对泄漏气团扩散过程中变化的气体浓度进行叠加计算,建立任意时刻沿下风向硫化氢体积分数分布的计算方法。根据输气管道泄漏扩散规律,确定大气扩散参数、各气团质量和喷射高度等基本参数,并以含硫体积分数为10%的输气管进行实例计算。结果表明:地面空气中的硫化氢体积分数在管道泄漏后沿下风向先增大后减小,影响范围不断向下风向延伸;且管径、压力越大,硫化氢在地面的影响范围越广。  相似文献   

2.
架空及埋地天然气管道泄漏扩散数值研究   总被引:1,自引:0,他引:1  
天然气在管道运输过程中,由于含硫等腐蚀性气体对管道内壁的腐蚀作用,在管内其他压力的作用下,会引起穿孔泄漏。泄漏后的天然气扩散后,可能会引发火灾、中毒或爆炸。因此,进行天然气管道泄漏扩散及数值模拟研究,对管道输送安全运营和保障人生财产安全意义重大。该文利用CFD软件对架空及埋地含硫天然气管道穿孔泄漏后的甲烷、硫化氢气体的扩散进行了数值模拟。结果表明,受土壤毛孔阻力的影响,埋地天然气管道泄漏爆炸范围比架空天然气管道泄漏要小,但其在地面的影响时间长,硫化氢的中毒范围比架空要低30m左右。为天然气的安全输送及环境保护提供了理论依据。  相似文献   

3.
根据高斯羽流、固体火焰模型及TNT当量法,得到针对氢气的扩散、热辐射与超压的后果模型。以我国某氢气管道为例,计算求解后果模型,分析了不同泄漏孔径、不同泄漏喷射角度的氢气管道泄漏典型事故后果,并揭示氢气泄漏扩散、喷射火与爆炸演化原因。量化了氢气管道泄漏的潜在影响半径,发现氢气管道风险大于天然气管道,为氢气管道早期设计与安全运行提供了理论支撑。  相似文献   

4.
含硫天然气管道泄漏硫化氢中毒事故影响因素分析   总被引:2,自引:1,他引:1  
针对含硫天然气管道泄漏人员硫化氢中毒事故,从管道运行、紧急截止阀、泄漏条件和环境四方面分析事故后果影响因素,并确定各个因素的作用.在综合分析管道动态泄漏过程、重气扩散和硫化氢中毒效应的基础上,明确含硫天然气管道泄漏可能产生的室内外最大人员死亡距离.分析表明,管道运行和紧急截止阀影响因素,包括管道压力、管道内径、相邻紧急截止阀间管段长度和低压关断压力,对室内外最大人员死亡距离有直接影响,需建立管道泄漏预防和处置方案,并根据管道周边人员分布情况,采取不同策略予以控制.泄漏条件和环境影响因素,包括泄漏孔径、风速和大气稳定度,具有很大不确定性,共同决定了室内外最大人员死亡距离.推荐采用综合分析方法,在保守分析的基础上指导事故评价和控制工作的开展.  相似文献   

5.
为研究不同泄漏场景下的硫化氢泄漏扩散特性,采用计算流体力学软件FLACS对站内设备进行了三维建模,并对站内分离器及管道开展了泄漏扩散模拟,通过分析模拟结果得到了不同泄漏速率及时间下硫化氢扩散规律。研究结果对于预测高含硫天然气站场泄漏事故影响范围及开展后续应急工作具有一定的实际意义。  相似文献   

6.
针对海洋酸性气田开采过程中含硫天然气井喷失控扩散问题,采用CFD方法建立井喷含硫天然气扩散后果预测与评估模型。综合考虑天然气爆燃与硫化氢毒害风险因素,对不同场景条件下的含硫天然气扩散过程开展数值模拟,研究硫化氢浓度、风向、风速等因素对含硫天然气扩散行为的影响,预测和评估天然气扩散所形成的危险区域和硫化氢气体扩散所形成的毒害范围。研究表明:随着硫化氢浓度的增加,燃爆区域无明显变化,而毒害区域明显增加;船艉来风导致的事故后果最为严重,左、右舷来风有利于危险气体的扩散与消散;风速越大,燃爆区域和毒害区域范围越小,但是在船艏来风且风速较大的工况下,硫化氢气体竖直扩散距离降低且逐渐贴近生活区,容易造成作业人员中毒事故的发生。  相似文献   

7.
针对长输天然气架空管道泄漏问题,综合考虑风速随海拔变化的边界条件、管道管形及泄漏方向等因素,建立非稳态泄漏模型,对不同管道泄漏压力和不同天然气浓度边界的天然气非稳态泄漏扩散进行了数值模拟。结果表明:在天然气向下泄漏的工况下,天然气气团主要在地面积聚,呈无规则的扩散;天然气管道泄漏压力与气体泄漏扩散速度成正比,与天然气浓度边界达到稳定所需时间成反比:不同泄漏压力下天然气扩散稳定后的扩散距离及泄漏影响面积大致相同;天然气浓度边界越小,达到稳定所需时间越长。  相似文献   

8.
通过对两种主要的事故形式——高含硫天然气泄漏导致的硫化氢中毒和气体爆炸事故的研究,利用HYSYS软件模拟管网运行条件下的各种临界参数条件,估计最大潜在物质量和最坏的后果。通过实例,利用Pasquill-Gifford模型计算最大可能的H2S浓度、利用等效TNT方法估计最坏的爆炸后果,进而得到死亡和破坏概率曲线,提出设计阶段基于本质安全的改进结论。结果表明:可早在高含硫天然气管道过程设计阶段就提出改进建议,使人员、财产和设备得到保护;中毒风险应通过快速关断阀门设置和划分应急区消减,通过管道和设备优化布局则可有效降低气体爆炸风险。  相似文献   

9.
针对山谷地区埋地天然气泄漏问题,建立三维泄漏模型,将管道模型建立于土壤下,给出山谷地区风随海拔高度变化边界条件,在此基础上对山谷地区高含硫天然气泄漏问题进行六组模拟。结果表明:六组工况下硫化氢的危险区域全部大于甲烷的危险区域,突显出天然气泄漏问题中硫化氢的危害性之大。风速对危险范围的影响很大,在山谷地形条件下危险范围大小与风速大小成反比,且风速越大,危险范围越小。三个泄漏口方向中漏口斜向上45°时空气中泄漏气体的总质量分数最大,扩散的范围最大,但部分范围内并未达到泄漏气体的危险浓度,危险范围比实际扩散范围要小,漏口斜向下45°时危险区域是最大的,漏口水平介于中间。  相似文献   

10.
为分析运输过程中液氨罐车在隧道内泄漏的危险性,利用Fire Dynamics Simulator(FDS)软件模拟氨气在隧道内的扩散过程,发展了隧道内氨气泄漏扩散体积分数分布特征经验公式。采用大涡模拟处理湍流流动,以便兼顾计算精度和计算效率。考虑储罐车发生泄漏后停止不动,液氨在泄漏瞬间转变为气体,模拟在连续点源泄漏情况下的氨气射流及扩散过程。结果表明,高体积分数危险区域主要集中在隧道顶棚附近,更高截面的体积分数处于爆炸极限的区域更长。泄漏源与洞口之间的隧道中段区域的体积分数梯度相对两端较小,此中段区域也是人员安全高度截面最高氨气体积分数发生位置。最大泄漏量情况下氨气在沿纵向扩散过程中平均运动速率保持在0.63~1.06 m/s,扩散速率随纵向距离增加而降低。顶棚氨气体积分数升高程度随纵向距离增加呈幂函数降低,体积分数沿纵向衰减规律适用于其他泄漏量的情况。后期工作可考虑开展缩尺试验,并同时考虑通风条件等因素对氨气泄漏扩散的影响研究。发展的氨气在隧道内泄漏扩散的体积分数分布经验公式可为氨气事故后果评价、应急处置等工作提供参考。  相似文献   

11.
针对目前城镇埋地管道天然气泄漏研究模拟工况简单、可信性较低等问题,考虑障碍物对环境风场的影响,利用计算流体力学(CFD)软件建立天然气管道三维泄漏模型,将模拟过程分为环境风场的稳态模拟和管道泄漏扩散的瞬态模拟两步,分析天然气泄漏扩散规律。结果表明:在风场稳态模拟中,建筑物附近风场受干扰明显,上游形成小范围的低速滞留区,下游形成较长的尾迹。在天然气泄漏扩散瞬态模拟中,土壤层天然气受风速影响较小,气体在近地面及贴近建筑物侧积聚,扩散范围随时间逐渐趋于稳定,泄漏扩散达到稳定后表现出土壤层积聚、气云沉降、贴近建筑物积聚、气云扩散局限性的特征。风速主要影响天然气的扩散高度,对水平方向的扩散范围影响较小,风速与天然气扩散高度成反比。  相似文献   

12.
为探究高含硫天然气发生泄漏时危害影响因素的相互关系,基于火焰加速模拟器(FLACS)软件模拟,采用单因素分析和均匀设计法研究CH4和H2S体积分数含量比、通风速率和管道压力对高含硫天然气泄漏爆炸与毒性的影响。研究结果表明:影响高含硫天然气泄漏爆炸极限范围因素主次顺序为通风速率管道压力 CH4与H2S含量比,其中通风速率负相关,管道压力、CH4与H2S含量比呈正相关,通风速率对爆炸极限范围影响最显著;影响泄漏毒性敏感主次因素相反,通风速率、含量比呈负相关,压力呈正相关,CH4与H2S含量比影响最显著。  相似文献   

13.
为了研究山地天然气管道泄漏扩散的影响情况,掌握山地管道泄漏扩散的规律,以西南山地天然气管道沿线高后果区为工程背景,建立山脚地形下管道泄漏扩散模型,采用计算流体动力学(CFD)软件Fluent研究不同泄漏孔径、不同风速对山脚地形下泄漏扩散的影响情况。结果表明:随泄漏孔径增大天然气射流核变粗、变长,射流初始截面和初始速度变大,射流的高度和幅度也变大,泄漏的影响区域变大;随泄漏孔径增加山脚地形下射流中心线的偏转程度变大,山脚处聚集的甲烷质量分数越来越高;在有风条件下,风速作用使甲烷在山脚处产生了聚集,且聚集的甲烷质量分数超过使人窒息的甲烷质量分数10%,随风速增大山脚处甲烷聚集的质量分数先增加后减小,且沿山坡向上扩散的甲烷质量分数先增加后减小。  相似文献   

14.
天然气管道泄漏火球事故后果模拟评价   总被引:3,自引:1,他引:2  
天然气管道发生泄漏时,大约90%的气体产生燃烧并形成火球,遇火源即发生危害性非常大的火球爆炸事故。本文针对城市天然气管道泄漏事故,综合考虑天然气泄漏后可能发生的火球燃烧和爆炸,利用爆炸冲击波和火球热辐射模型对天然气管道(完全破裂)在发生泄漏时发生火球爆炸进行计算,结果表明:2分钟内泄漏天然气云团超压爆炸的死亡半径和热辐射的火球半径分别高达39.44m和92.93m。因此,通过计算天然气泄漏火球事故爆炸和热辐射范围,对天然气火球爆炸事故预防与应急救援具有一定的意义。  相似文献   

15.
针对城市埋地天然气管道泄漏天然气扩散问题,基于计算流体动力学CFD方法建立城市埋地天然气管道泄漏扩散数值模型,对天然气的主要成分——甲烷在土壤中的扩散行为进行模拟与分析,根据甲烷的爆炸极限观察天然气泄漏扩散危险区域变化,并分析不同孔隙率土壤对天然气扩散的影响。研究结果表明:埋地天然气管道泄漏气体扩散至土壤过程中,气体浓度等值线出现不规则变化,高浓度区等值线近似为椭圆,浓度梯度随时间的增加而减小,爆炸下限位置在天然气泄漏初期迅速变化,10 s后以均匀速度向地表移动;土壤孔隙率对天然气对流扩散影响显著,孔隙率越大,管道泄漏口处高浓度区域越大,中浓度区域越小,低浓度区域越容易扩展到地表,浓度梯度变化趋势相似。  相似文献   

16.
高压天然气管道孔口泄漏扩散浓度与范围仿真探讨   总被引:3,自引:0,他引:3  
朱彦凝  吴赟城  王强 《安全》2009,30(4):4-7
天然气管道的泄漏容易引起火灾、爆炸、中毒、环境污染等恶性事故。建立输气管道泄漏扩散的合理模型是正确评估输气管道事故损失后果的关键技术之一。文中重点研究天然气泄漏与扩散过程机理,并对其中的高斯烟羽、烟团模型进行了修正。以某长输送管段的参数为例计算天然气压力管道的泄漏速度、流量、扩散浓度并且估算确定天然气的泄漏覆盖区域,探讨其扩散的影响范围。  相似文献   

17.
为定量评估高含硫天然气开敞空间泄漏过程中风速、风向、泄漏速度、泄漏方向对毒害后果的影响,以天然气净化厂管道泄漏为例,采用正交实验设计方法设计实验场景,基于CFD进行泄漏扩散仿真实验,以吸入剂量、毒害面积、最大毒害面积到达时间、毒害体积、最大毒害体积到达时间作为毒害效应指标,分析不同因素对毒害后果的影响,并提出后果控制建议。研究结果表明:采用CFD方法进行泄漏扩散仿真能够还原泄漏扩散过程;利用正交实验进行影响因素分析可以节省实验资源、获取准确结果;风向和风速对各后果指标均比较敏感,在天然气净化厂建设过程中应着重考虑风的影响。仿真与正交实验结合的方法能够有效评估毒害后果影响因素的敏感性,可为毒害气体泄漏风险防控提供指导。  相似文献   

18.
针对架空管道天然气泄漏问题,考虑管道自身对泄漏扩散的影响,利用计算流体力学(CFD)软件建立天然气管道三维泄漏模型,为提高模拟可信性和合理性,先对计算流域风场进行稳态模拟,再对天然气泄漏扩散过程进行瞬态模拟,分析天然气泄漏扩散规律及风速对泄漏扩散的影响。结果表明:在稳态风场模拟中,管道附近风场受管道影响十分明显,管道上下侧面风速极高;在瞬态天然气泄漏扩散模拟中,天然气泄漏初期的扩散受风速影响明显,验证了先进行稳态风场模拟的必要性,泄漏扩散达到稳定状态后出现气云沉降、单侧分布、尾部分叉、风速影响扩散距离的特征;同等风速条件下,较小浓度边界扩散范围大,达到稳定所需时间短,同等浓度边界条件下,风速与扩散影响面积和浓度边界达到稳定所用时间成反比。  相似文献   

19.
城市埋地天然气管道发生泄漏不易被发现,并易产生爆炸、火灾、中毒等次生事故,针对低压埋地天然气管道施工分层填筑与不分层填筑的两种情况建立模型,依据多孔介质模型修正后的基本控制方程,采用FLUENT组分运输模型、RNG k-ε湍流模型,对管道沟渠分层填筑与不分层填筑气体泄漏扩散情况进行数值模拟。根据仿真土壤含气摩尔量划分三个浓度区域进行分析,分层填筑土壤分界处砂土含气量达到低浓度的时间较快约为60 s,12 min可以达到高浓度区域。两种材质交界面处,高浓度气体扩散存在延迟,中浓度和低浓度气体扩散在交界面处扩散曲线有明显拐点,进入到上层土壤材料后扩散速率加快,不分层填筑模型扩散速率没有明显改变。  相似文献   

20.
某集输站场的天然气中含有大量的H2S,一旦管道或设备腐蚀泄漏,将会造成非常严重的后果.针对潜在的中毒、火灾和爆炸后果的危险性,建立各种后果的数学模型,用DNV公司的PHAST软件模拟了天然气发生泄漏后所造成各种后果的影响范围及危害程度,并确定出对于高含硫天然气泄漏后果影响最严重的模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号