首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Schädler M  Brandl R  Haase J 《Ecology》2007,88(6):1490-1498
Interspecific competition between plants and herbivory by specialized insects can have synergistic effects on the growth and performance of the attacked host plant. We tested the hypothesis that competition between plants may also negatively affect the performance of herbivores as well as their top-down effect on the host plant. In such a case, the combined effects of competition and herbivory may be less than expected from a simple multiplicative response. In other words, competition and herbivory may interact antagonistically. In a greenhouse experiment, Poa annua was grown in the presence or absence of a competitor (either Plantago lanceolata or Trifolium repens), as well as with or without a Poa-specialist aphid herbivore. Both competition and herbivory negatively affected Poa growth. Competition also reduced aphid density on Poa. This effect could in part be explained by changes in the biomass and the nitrogen content of Poa shoots. In treatments with competitors, reduced aphid densities alleviated the negative effect of herbivory on above- and belowground Poa biomass. Hence, we were able to demonstrate an antagonistic interaction between plant-plant interspecific competition and herbivory. However, response indices suggested that antagonistic interactions between competition and herbivory were contingent on the identity of the competitor. We found the antagonistic effect only in treatments with T. repens as the competitor. We conclude that both competitor identity and the herbivore's ability to respond with changes in its density or activity to plant competition affect the magnitude and direction (synergistic vs. antagonistic) of the interaction between competition and herbivory on plant growth.  相似文献   

2.
Few systems have been described in which herbivore-induced root volatiles mediate attraction of entomopathogenic nematodes (EPNs), and they only concern root damage inflicted by chewing insects. EPNs, especially Heterorhabditis indica and Steinernema carpocapsae, are potential biological control agents of sugarcane spittlebug (Mahanarva fimbriolata) populations. Here, we investigated the response of these two species of EPNs to sugarcane root volatiles damaged by M. fimbriolata nymphs in a belowground six-arm olfactometer. We also examined changes on root volatile profile in response to herbivory of sugarcane spittlebug nymphs. Results showed that both EPN species did not discriminate between odors of undamaged sugarcane and moistened sand (blank). However, when EPNs were exposed to odors of spittlebug-damaged and undamaged sugarcane roots, both species significantly preferred odors of spittlebug-damaged roots. Headspace collection followed by GC–MS analyses showed no qualitative difference (total of 11 compounds) between volatile profiles of spittlebug-damaged and undamaged sugarcane roots. In contrast to the previous studies involving feeding by root chewing insects, our root volatile analysis did not reveal any up-regulation resulting from sugarcane spittlebug damage, but the down-regulation of the terpenes dihydromyrcenol and β-isomethyl ionone when compared with the profile of undamaged sugarcane roots. Here, we propose alternative explanations for the EPN attraction to spittlebug-damaged roots as it is unlikely that reduced concentrations of the volatiles play a role in this interaction. Further studies are necessary to determine the key compounds of the root volatile emission to enhance biological control efficacy with EPNs against M. fimbriolata in sugarcane.  相似文献   

3.
Stier AC  Osenberg CW 《Ecology》2010,91(10):2826-2832
Increased habitat availability or quality can alter production of habitat-dependent organisms in two contrasting ways: (1) by enhancing input of new colonists to the new sites (the Field-of-Dreams Hypothesis); and (2) by drawing colonists away from existing sites (the Propagule Redirection Hypothesis), and thus reducing the deleterious effects of density. We conducted a field experiment on coral reef fishes in Moorea, French Polynesia, to quantify how differing levels of habitat availability (controlling for quality) increased and/or redirected colonizing larval fish. Focal reefs without neighboring reefs received two to four times more settlers than reefs with adjacent habitat, demonstrating that increased habitat redirected larval fish. At the scale of the entire reef array, total colonization increased 1.3-fold in response to a sixfold increase in reef area (and a 2.75-fold increase in adjusted habitat availability). Thus, propagules were both increased and redirected, a result midway between the Field-of-Dreams and Propagule Redirection Hypotheses. A recruitment model using our data and field estimates of density-dependent recruitment predicts that habitat addition increases recruitment primarily by ameliorating the negative effects of competition at existing sites rather than increasing colonization at the new sites per se. Understanding long-term implications of these effects depends upon the interplay among habitat dynamics, population connectivity, colonization dynamics, and density dependence.  相似文献   

4.
The threat posed by invasive nonnative plants to native plant populations is one of the largest challenges facing both conservation biology and restoration ecology. California has been highly impacted by invaders, although many relict stands of native plants are found on shallow, rocky soils with limited resources. The abiotic conditions of these sites may strongly influence the performance of an invasive plant and its effect on resident native species. In addition, the maturity of native plants in these sites may modulate an invader's impact; larger, well-established plants may be better able to resist invaders. In this study we examined how the impact of an invasive thistle (Centaurea solstitialis) on a native perennial bunchgrass (Nassella pulchra) changed in response to variation in soil depth, soil water availability, and bunchgrass maturity. We measured plant performance in terms of survival, growth, reproduction, and predawn water potential. We found that soil depth, water availability, and bunchgrass maturity acted in concert to influence the impact of the invasive thistle on the native bunchgrass. Both species performed better in deep soils, especially during dry years. The combination of shallow soil and low water availability reduced C. solstitialis performance and ameliorated its negative effect on N. pulchra growth and reproduction. Higher water availability resulted in a stronger negative effect of C. solstitialis on N. pulchra in both shallow and deep soils. However, as N. pulchra matured and increased in size, we saw a steady decline in C. solstitialis growth and reproductive output. Higher water availability increased the performance of C. solstitialis in shallow soils. C. solstitialis may thus have a stronger impact on N. pulchra and be more able to invade relict stands of N. pulchra in shallow soils during high-rainfall years. However, established stands of N. pulchra appear to be more resistant to invasion by C. solstitialis as N. pulchra plants grow older and larger.  相似文献   

5.
Brandt AJ  Seabloom EW 《Ecology》2012,93(6):1451-1462
The effects of exotic species invasions on biodiversity vary with spatial scale, and documentation of local-scale changes in biodiversity following invasion is generally lacking. Coupling long-term observations of local community dynamics with experiments to determine the role played by exotic species in recruitment limitation of native species would inform both our understanding of exotic impacts on natives at local scales and regional-scale management efforts to promote native persistence. We used field experimentation to quantify propagule and establishment limitation in a suite of native annual forbs in a California reserve, and compared these findings to species abundance trends within the same sites over the past 48 years. Observations at 11 paired sites (inside and outside the reserve) indicated that exotic annual plants have continued to increase in abundance over the past 48 years. This trend suggests the system has not reached equilibrium > 250 years after exotic species began to spread, and 70 years after livestock grazing ceased within the reserve. Long-term monitoring observations also indicated that six native annual forb species went extinct from more local populations than were colonized. To determine the potential role of exotic species in these native plant declines, we added seed of these species into plots adjacent to monitoring sites where plant litter and live grass competition were removed. Experimental results suggest both propagule and establishment limitation have contributed to local declines observed for these native forbs. Recruitment was highest at sites that had current or historical occurrences of the seeded species, and in plots where litter was removed. Grazing history (i.e., location within or outside the reserve) interacted with exotic competition removal, such that removal of live grass competition increased recruitment in more recently grazed sites. Abundance of forbs was positively related to recruitment, while abundance of exotic forbs was negatively related. Thus, exotic competition is likely only one factor contributing to local declines of native species in invaded ecosystems, with a combination of propagule limitation, site quality, and land use history also playing important and interactive roles in native plant recruitment.  相似文献   

6.
The northern range limit of the intertidal limpet Lottia scabra is Cape Arago, Oregon (43°N), where adult survival is excellent, the population is small (<300), and recruitment is low; the range limit may be set by limited recruitment. Between June 2012 and March 2013, 25 sites from the middle of the species range (33°N) to Cape Arago were sampled and population size frequency distributions, densities, and nearest neighbor distances were compared to the amount of rocky and sandy shore and kelp bed size. North and south of 37°N, the densities of new recruits averaged 22 and 86 m?2, respectively. This shift was associated with the range limit of Macrocystis pyrifera kelp beds; we hypothesize that slower currents in M. pyrifera beds may limit larval dispersal leading to higher recruitment. North and south of 40°N, adult density averaged <1 and 458 m?2, respectively, with the species absent from many sites to the north. This shift was associated with a sharp drop in the amount of rocky shoreline and an increase in uninhabitable sandy shore. Near the northern range limit, >80 % of the individuals were solitary and may be unable to spawn successfully. Recruitment at Cape Arago was infrequent and likely due to self-recruitment. This study suggests that the range limit was set by the absence of M. pyrifera and too little rocky shore leading to high larval wastage, low settlement, low population densities, and, due to an Allee effect, very small effective population sizes.  相似文献   

7.
Studies of biogeographic variation in species abundances are fundamental to understanding and predicting the impacts of invasive exotic species. We quantified the abundance of the introduced and now invasive biocontrol weevil, Rhinocyllus conicus, on a newly adopted native host plant, Cirsium canescens (Platte thistle), across the plant's distributional range. We used regression and structural equation analyses to examine variation in weevil abundance at 92-108 sites over three years in relation to variation in abiotic and biotic parameters hypothesized to be important in insect or plant dynamics and distribution. We found that R. conicus now occurs throughout the majority of the range of C. canescens, even in the center of the native plant's distribution where its coevolved, targeted weed host (Carduus nutans, musk thistle) is absent. In fact, weevil densities were greater in the center of the native plant's distribution in the Sand Hills formation than in peripheral sand patches closer to areas where the targeted 'exotic thistle is common. None of the macroclimatic variables examined were consistent predictors of the large-scale variation in weevil abundance on C. canescens. In addition to biogeographic position, the only other consistent predictor of weevil densities across sites was the number of flower heads per C. canescens plant. These results exclude the "spillover" hypothesis to explain nontarget feeding on this newly adopted native host species. Instead, the results are consistent with the alternative hypothesis that exotic weevil abundance on C. canescens is related to the local availability of native floral resources. Because C. canescens densities have declined with increases in R. conicus at sites central in the plant's distribution, these results suggest that isolated, peripheral populations of C. canescens are likely to be critical for persistence of Platte thistle. More generally, this study suggests that the persistence of a native species that is impacted by an exotic natural enemy may require preservation of populations in habitats outside the optimal portion of the native species' distribution.  相似文献   

8.
Schwanz LE  Spencer RJ  Bowden RM  Janzen FJ 《Ecology》2010,91(10):3016-3026
Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early life-history demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of nests constructed, and depredation rate. Recruitment of female hatchlings was determined by stochastic variation in nest depredation and annual climate and also by the total nest production. Overall population demography depends more strongly on annual variation in climate and predation than it does on the intricacies of nest-specific biology. Finally, we demonstrate that recruitment of female hatchlings translates into recruitment of breeding females into the population, thus linking climate (and other) effects on early life stages to adult demographics.  相似文献   

9.
Summary I monitored the temporal pattern of diurnal feeding activity in several wood warbler (Parulidae) species and concomitantly recorded the numbers of active (flying) insects in 2 willow habitats in the western United States. At one site the temporal relationship between the density of active and inactive (nonflying) insects was investigated. The diurnal patterns of insect and bird activity were inversely related and each pattern was significantly nonuniform throughout the day; the wood warblers were largely inactive during the middle of the day when insects were most active.As foliage-gleaning birds, wood warblers depend primarily on the availability of inactive (nonflying) insects that they pick from the foliage, and they appear to be limited in their foraging activity by the unavailability of such insects during midday. Interestingly, the duration of midday inactivity for a given bird species varied inversely with the proportion of time that species spent flycatching. Thus, food availability may play an important role in determining the temporal patterns of feeding activity in these insectivorous bird species.  相似文献   

10.
Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity.  相似文献   

11.
Similar to several environmental monitoring studies, the present study used Drosophila melanogaster as a model nontarget organism to explore the interfering effects of an organophosphate (OP) insecticide acephate on insect life cycle parameters. Acephate, a common OP, is readily available in nature from agricultural sources as an environmental contaminant. Along with target pests, nontarget fruit flies also suffer exposure to such environmental chemical. To evaluate the effects of such exposure, initially, acute LC50 of acephate for third instar larvae was investigated and found to be between 14 and 16 μg/ml. This information yielded the following experimental concentrations (0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 μg/ml) of test chemical for evaluation of effect, if any, on the insect model. Results showed that mean larval duration of insect significantly decreased on treatment with acephate, whereas the mean pupal duration remained unaffected. Interestingly the decreasing trend was seen to persist in case of mean adult emergence, where treated flies emerged significantly earlier in comparison to controls. Thus, the study demonstrated that acephate-induced shortening of developmental time and early emergence in Drosophila melanogaster.  相似文献   

12.
Dong Zhang  Junda Lin 《Marine Biology》2007,150(4):639-645
Sex change in many hermaphrodite animals has been suggested to be environmentally determined, especially socially. To investigate whether sex change in the protandric simultaneous hermaphrodite shrimp Lysmata wurdemanni (Gibbes 1850) is socially mediated, two experiments were conducted in the laboratory between September 2002 and April 2004 using laboratory-cultured shrimp that originated from Port Aransas, Texas, USA. The size at sex change (from male to simultaneous hermaphrodite) in this shrimp is variable, with the minimum around 2.4 cm in total length (TL). Large shrimp (2.4–4.5 cm TL) still in the male-phase (MP) have been found in the wild and laboratory environments. This study tested the hypothesis that large MP shrimp delay changing to the euhermaphrodite-phase (EP) due to social control. In the first experiment, ten shrimp were raised in large (110-l) and small (20-l) containers to test the effect of habitat size/density on sex change. The percentage of shrimp changing to EP was significantly higher in the large container (low density) than in the small container after 60 and 120 days. But after 570 days sex ratios were the same, 2 MP:8 EP. In the second experiment, group composition was changed over time to simulate population recruitment and mortality. MP shrimp delayed sex change when EP shrimp were present. However, if group structure is stable, some MP shrimp may not change sex during their lifetime. Under certain demographic conditions, such as when postlarvae (PL) were added to (simulating recruitment) or EP shrimp were removed from (simulating mortality) a group, all old MP (from original PL) shrimp changed to EP. The response of old MP shrimp to simulated recruitment is faster than to simulated mortality. The present study confirms that social control affects the size and timing of sex change in L. wurdemanni. However, some MP shrimp never change sex suggesting that genetics might also play a role in the sex ratios of L. wurdemanni populations.  相似文献   

13.
14.
Summary Female mammals in good condition can maximize their inclusive fitness by investing more in male offspring than in female offspring during periods of poor environmental quality. To test this hypothesis, we measured the effects of undernutrition and crowding before and during gestation on the sex ratio and weight of offspring at parturition and at weaning in Mus domesticus. Sex ratio was not significantly affected by density. Dams altered the sex ratio of their offspring in response to food availability, but only if variance in competitive success within the experimental subpopulation was evident. Thus ad lib fed females produced litters with an unbiased sex ratio, competitively successful females under moderate food availability produced a male-biased sex ratio, and severely food deprived females produced litters with a female-biased sex ratio. In groups that experienced competition for food, successful dams favoured male offspring during lactation. These results are consistent with the predictions of Trivers and Willard (1973). Analysis of within-cell variance and covariance suggests that the interaction of social structure and food availability provides specific cues for the dams' tactical reproductive choices.  相似文献   

15.
Nonterritorial Sebastes carnatus and S. chrysomelas existed, along with territorial individuals, at 3 tagging sites off southern California, USA, which were monitored for nearly 1 yr. To test the hypothesis that territoriality affected adult density in these species, territorial fish were removed and the subsequent utilization of vacated territories by other fish was monitored. Intrusion of other fish into vacated territories increased significantly in 90% of the removals. Other fish colonized both the feeding and sheltering parts of the vacated territories, indicating that the previous owners had successfully defended both parts of their territories. Many of the colonizers had already possessed territories; they expanded their territories or moved into presumably better havitat. Several previously-nonterritorial fish also moved into vacated areas, and at least some of them appeared to establish territories. These fish, then, had previously been capable of establishing territories, but were prevented from doing so by resident territory holders. Thus territoriality, rather than such other factors as predation or low recruitment, limited the number of territorial fish at each site. However, territorial fish did not inhibit the settlement of larval recruits, and the relative mortality rates of older territorial vs nonterritorial fish were not determined. Thus the question of whether territoriality was a major factor controlling total density remains unresolved.  相似文献   

16.
17.
The Atlantic surfclam, Spisula solidissima (Dillwyn, 1817), is a dominant member of the benthic community on the continental shelf from Georges Bank to North Carolina, USA. This bivalve has supported a major fishery, primarily off New Jersey and the Delmarva Peninsula, since the 1960s. Early papers documented that these populations were at historical lows in the mid-1970s owing to commercial harvesting and a hypoxic event off New Jersey. It was also shown that major recruitment took place off New Jersey in 1976 and off the Delmarva Peninsula in 1977. Because the size frequencies of surfclams from federal surveys do not show distinct year classes, there has been uncertainty about the number of year classes in these populations throughout the 1980s and 1990s. The present study describes changes in population age- and size-structure from 1978 to 1997 in federal waters (≥5.5 km from shore) of the USA. Given the 30 to 35 year life span of S. solidissima, these populations could be composed of many year classes. Yet, these populations were composed of only two to three year classes in 1978. Through annual recruitment, the number of year classes increased over time, and populations off New Jersey and the Delmarva Peninsula contained at least 19 year classes in 1997. This major change in population structure over time was not evident from examination of available size-frequency data, and could only be inferred from data on age-composition. Throughout the 1980s and 1990s, the surfclam fishery was supported by multiple year classes. The mean and variance of recruitment to the New Jersey region, as indicated by the abundance of 4-year-olds over time, was greater than that off Delmarva, particularly between 1980 and 1986. The instantaneous rate of adult mortality, which includes the effect of harvesting, was approximately 0.26 yr−1 in each region. Received: 11 September 1998 / Accepted: 1 February 1999  相似文献   

18.
Recruitment data for 18 marine fish stocks are smoothed using 10 parametric families of probability distributions. Comparative fit of the 10 families is assessed by means of the maximized log-likelihood. Results indicate that the gamma distribution provides an overall good fit in the right-hand tail of the data, but that some adjustment to the gamma distribution is called for in the left-hand tail. Weight functions and weighted distributions are suggested as one means of achieving the needed adjustment.  相似文献   

19.
Aquilino KM  Stachowicz JJ 《Ecology》2012,93(4):879-890
The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities.  相似文献   

20.
Plants have different strategies to cope with herbivory, including induction of chemical defences and compensatory growth. The most favourable strategy for an individual plant may depend on the density at which the plants are growing and on the availability of nutrients, but this has not been tested previously for marine plant–herbivore interactions. We investigated the separate and interactive effects of plant density, nutrient availability, and herbivore grazing on the phlorotannin (polyphenolic) production in the brown seaweed Ascophyllum nodosum. Seaweed plants grown at low or high densities were exposed either to nutrient enrichment, herbivorous littorinid gastropods (Littorina obtusata), or a combination of nutrients and herbivores in an outdoor mesocosm experiment for 2 weeks. Seaweeds grown at a low density tended to have higher tissue nitrogen content compared to plants grown at a high density when exposed to elevated nutrient levels, indicating that there was a density dependent competition for nitrogen. Herbivore grazing induced a higher phlorotannin content in plants grown under ambient, but not enriched, nutrient levels, indicting either that phlorotannin plasticity is more costly when nutrients are abundant or that plants responded to herbivory by compensatory growth. However, there were no significant interactive or main effects of plant density on the seaweed phlorotannin content. The results indicate that plants in both high and low densities induce chemical defence, and that eutrophication may have indirect effects on marine plant–herbivore interactions through alterations of plant chemical defence allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号