首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanisms maintaining sex ratios in populations with temperature-dependent sex determination (TSD) remain elusive. Although geographic variation in embryonic sex determination (i.e., pivotal temperature) has been widely investigated in reptiles exhibiting TSD, no previous studies have directly addressed geographic variation in maternal behavior affecting nest thermal conditions. I evaluated patterns of nest-site selection and its effects on thermal and hydric nest conditions for a population of painted turtles ( Chrysemys picta bellii) exhibiting TSD in New Mexico. These results are compared to data collected from a well-studied, conspecific population experiencing relatively cooler climatic conditions in Illinois. Since canopy vegetation cover reduces nest temperatures in Illinois, I expected females in New Mexico to nest under high amounts of canopy vegetation cover. However, females from New Mexico placed nests under significantly less canopy vegetation cover, but closer to standing water, than did females from Illinois. Experimental nests in New Mexico demonstrated that increased canopy vegetation cover and soil moisture reduced nest temperatures. By nesting close to standing water rather than under canopy vegetation cover, females in New Mexico nested in habitats more closely associated with maximizing moisture around nests rather than reducing nest temperatures through shading. Mean July nest temperatures were similar for both populations. Since nest hydric conditions affect hatching success and hatchling size in C. picta, nesting patterns in New Mexico may primarily reflect selection for microhabitats affecting offspring survivorship or size.  相似文献   

2.
We formulate a two-sex model of temperature-dependent sex determination (TSD) for a freshwater turtle (C. picta) population. The aim is to understand how environmental temperature variations and nest heat conduction properties affect the long term dynamics of the population. This is a key to understanding how global temperature changes may affect their survival. With stochastic inputs of ambient temperature and solar radiation, the model uses the heat equation to determine the temperature in the egg layer in the nest; in turn, this determines the sex ratio in the egg clutch using a variable degree-day model. Finally, a nonlinear Leslie type, stage-based, two-sex model, is used to determine the long term male and female populations. A two-sex model is required because of different development rates for males and females. The model is flexible enough to enable other researchers to examine the effects of temperature variation variations on other species with TSD, e.g., crocodilians, reptilians, as well as other turtle species. It can be adapted to study effects of nest location, soil type, rain events, different incubation periods, and density effects, for example, the dependence of the mating function on the ratio of males to females and each’s contribution to the sex of hatchlings. Modifications can be easily made to fit a specific life history traits. The model is a beginning step in understanding the long term, high fitness shown by many reptile species with TSD, and it may suggest to experimentalists what data may be relevant to these issues; it can also be useful to wildlife managers in developing strategies for intervention if needed. Among the principal findings are that temperature variability and detailed nest heat conduction properties may buffer projected negative effects on a population.  相似文献   

3.
Theory suggests that maternal effects are especially important in organisms with environmentally-sensitive sex-determining mechanisms. However, there is no substantive body of empirical evidence to confirm this conjecture. We integrated field and laboratory studies to jointly evaluate the significance of behavioral (nest-site choice) and physiological (yolk hormone allocation) maternal effects on offspring sex ratio in the common snapping turtle (Chelydra serpentina), a species with temperature-dependent sex determination (TSD). Of the 16 microhabitat variables measured, only three (south, east, and total overstory vegetation cover) were significantly correlated with nest temperature: cooler nests were located under more vegetation cover. In turn, these microhabitat predictors of nest temperature, and nest temperature itself, may influence nest sex ratio: shadier, cooler nests were more likely to produce a higher proportion of male offspring than less shady, warmer nests. Analysis of eggs from these same nests incubated in a common garden design in the laboratory revealed that clutch sex ratio was unaffected by levels of yolk estradiol, yolk testosterone, or their interaction. Examination of both behavioral and physiological maternal effects revealed no concordant impact on offspring sex ratio. However, eggs from nests that produced male-biased sex ratios in the field yielded higher proportions of males under constant-temperature conditions in the laboratory. Our study confirms the importance of behavioral maternal effects in nature on offspring sex ratios in species with TSD, while also revealing the potential presence of a predisposition for sex-ratio production underlying TSD in this system.Communicated by S. Krackow  相似文献   

4.
In marine turtles, the sex of an individual is determined by temperatures experienced during embryonic development. Gonad histological observation is still the only reliable way to determine hatchling sex, hampering the study of reproduction and of the demographic consequences of context-dependent sex-ratios, a subject of interest in a warming planet. We investigated whether hatchling remains from predation by Ocypode cursor can be used to estimate sex-ratio trends in a green turtle rookery at Poilão, Guinea-Bissau (10°52′N, 15°43′W). Sex could be readily determined in 77 and 79% of the predated hatchlings in 2008 and 2009, respectively. By comparing hatchlings killed by crabs, hatchlings accidentally dying on the reefs, and live hatchlings, we show that ghost crabs select the smaller prey, but do not select according to hatchling sex, which is explained by the lack of hatchling size dimorphism in this population. The proportion of male hatchlings was 0.45 ± 0.06 and 0.15 ± 0.06 for early and late-season clutches, respectively, these differences most likely being explained by rainfall. Using leftovers from predation by crabs may be a good solution to non-invasively monitor broad trends in sex-ratios of sea turtles.  相似文献   

5.
Locomotion performance plays a vital role in determining hatchling green turtle Chelonia mydas survival in the first few hours after emerging from their nests as hatchlings crawl and swim the gauntlet of predators before reaching the relative safety of the open ocean. Previous laboratory based constant incubation experiments found incubation temperature to influence the size and swimming performance of hatchling green turtles. Here we examine the morphology and crawling and swimming performance of hatchling green turtles as they emerge from nests on Heron Island rookery in the southern Great Barrier Reef to test the hypothesis that nest temperature in the field can influence these attributes. We found inter-nest differences in hatchling mass and dimensions, and that hatchling mass was not correlated with nest temperature. However, hatchlings from warmer nests had smaller carapace dimensions than hatchlings from cool nests suggesting that more yolk was converted to hatchling tissue during embryonic development in cool nests. There was considerable intra- and inter-nest variation in both crawling and swimming performance of hatchlings. Hatchlings from cool nests tended to be faster crawlers than hatchlings from warm nests, but the thrust produced during swimming was not correlated with nest temperature. During the 4 h swimming trial, hatchlings swimming effort decreased significantly during the first 3 h but swimming effort remained relatively constant for the last 1 h. Individual hatchling crawling and swimming performances were not correlated with each other. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Nest protection through egg relocation from natural nests into protected hatcheries is a common practice used at rookeries around the world to increase hatchling recruitment into sea turtle populations. However, rarely have the impacts of this practice on hatchling recruitment and quality been assessed. This study investigated the influences of the thermal nest environment of olive ridley turtles Lepidochelys olivacea on emergence success and quality of hatchlings of hatchery nests in Alas Purwo National Park, East Java, Indonesia (2009 and 2010 nesting seasons). Nest temperatures above 34?°C for at least 3 consecutive days during incubation in the hatchery resulted in decreases in emergence success and locomotor performance of hatchlings. The use of the hatchery is recommended due to extremely high predation rate of nests left on the beach; however, altering hatchery management practice by spacing nests one meter apart and providing shade should improve hatchery outcomes now and into the future.  相似文献   

7.
Food and predators affect egg production in song sparrows   总被引:5,自引:0,他引:5  
Zanette L  Clinchy M  Smith JN 《Ecology》2006,87(10):2459-2467
Although the possibility that food and predators may interact in limiting avian populations has long been recognized, there have been few attempts to test this experimentally in the field. We conducted a manipulative food addition experiment on the demography of Song Sparrows (Melospiza melodia) across sites that varied in predator abundance, near Victoria, British Columbia, Canada, over three consecutive breeding seasons. We previously showed that food and predators had interactive effects on annual reproductive success (young fledged per female). Here, we report the effects on egg production. Our results show that food limits the total number of eggs laid over the breeding season ("total egg production") and that interactive food and predator effects, including food effects on nest predation, determine how those eggs are "parceled out" into different nests. Food addition alone significantly affected total egg production, and there was no significant interannual variability in this result. At the same time, both food and predators affected the two determinants of total egg production: "clutch number" (total number of clutches laid) and average clutch size. Both clutch number and size were affected by a food x predator x year interaction. Clutch number was lower at low-predator locations because there was less nest predation and thus less renesting. Food addition also significantly reduced nest predation, but there was significant interannual variation in this effect. This interannual variation was responsible for the food x predator x year interactions because the larger the effect of food on nest predation in a given year, the smaller was the effect of food on clutch number; and the smaller the effect of food on clutch number, the larger was the effect of food on clutch size. Potential predator and year effects on total egg production were thus cancelled out by an inverse relationship between clutch number and clutch size. We suggest that combined food and predator effects on demography could be the norm in both birds and mammals.  相似文献   

8.
The nesting season of the green turtle, Chelonia mydas on Wan-An Island, Peng-Hu Archipelago, Taiwan extended from early June to early October in both 1992 and 1993. Turtles nested on 9 of the 11 beaches on the island. The average inter-nesting interval was 14.9 d. A close relationship between the first reemergence time and the tidal cycle was found in the present study. The mean straight carapace length of the adult female was 96.6 cm. Female turtles produced from one to nine egg clutches; the average clutch size was 113 eggs. The mean egg size was 46.9 mm in diameter and 22.7 g in weight. The average incubation period was 49.3 d. The sediment characteristics of the beaches on the island are well within the incubation requirements for green turtle nesting. The average hatching success was 70%, but was lower in the artificial nest. The average size for hatchlings was 46.9 mm in straight carapace length and 22.7 g in body weight. The health of the hatchling is influenced by the adult female size, the nesting depth and the precipitation during incubation.  相似文献   

9.
Incubation period, hatching success, and emergence percentage in loggerhead (Caretta caretta) nests were quantified during the 1993 and 1995 nesting seasons and following incubation seasons in Minabe, Wakayama, Japan. Sand and nest temperatures were also monitored. Over the seasons, daily mean sand temperature at nest depth fluctuated between 18.0°C and 33.3°C, with a steep increase in the second week of July and a peak in late August. Temperatures inside the nest chambers were a few degrees above those of the surrounding sand at the end of incubation. The incubation period ranged from 46 to 82 days. A significant negative correlation was found between mean sand temperature and incubation period. The relationship conformed to the day-degree concept. There was no significant seasonal trend in hatching success, but many pre-emergent hatchlings were found dead in most of the clutches during the warmest part of the season. Emergence percentage was correlated with mean sand temperature calculated for 4 days before emergence, suggesting that mortality may be due to heat. This heat-related mortality is considered to be a common phenomenon at our study site, because the peak in emergences coincides with the peak in high temperatures. These temperature effects on hatchling mortality must be taken into account in estimates of hatchling sex ratios. Because sand temperatures already exceed the optimal thermal range for incubation, this population is vulnerable to even small temperature increases resulting from global warming.  相似文献   

10.
Kamel SJ  Mrosovsky N 《Ecology》2006,87(11):2947-2952
Within a single population of hawksbill sea turtles (Eretmochelys imbricata), we found a behavioral polymorphism for maternal nest site choice with respect to beach microhabitat characteristics. Some females preferred to nest in littoral forest and in places with overstory vegetation cover, and others preferred to nest in more open, deforested areas. Nest site choice was consistent within and between nesting seasons two years apart. This was not a result of females simply returning to the same location along the shoreline; beach sections used by individual turtles varied between seasons. Nest site choice was not influenced by changes in beach environment (e.g., beach width and foliage cover) or by changes in females' reproductive output (e.g., clutch size), suggesting that fidelity to particular microhabitats is a major determinant of the observed nesting patterns. Because hawksbills exhibit temperature-dependent sex determination, if the behavioral polymorphism in nest site choice has a genetic basis, as is plausible, then this would have implications for sex ratio evolution and offspring survival. By taking an individual-based approach to the study of maternal behavior we reveal previously overlooked individual variation and hope to provide some impetus for more detailed studies of nest site choice.  相似文献   

11.
Abstract: Species that have temperature‐dependent sex determination (TSD) often produce highly skewed offspring sex ratios contrary to long‐standing theoretical predictions. This ecological enigma has provoked concern that climate change may induce the production of single‐sex generations and hence lead to population extirpation. All species of sea turtles exhibit TSD, many are already endangered, and most already produce sex ratios skewed to the sex produced at warmer temperatures (females). We tracked male loggerhead turtles (Caretta caretta) from Zakynthos, Greece, throughout the entire interval between successive breeding seasons and identified individuals on their breeding grounds, using photoidentification, to determine breeding periodicity and operational sex ratios. Males returned to breed at least twice as frequently as females. We estimated that the hatchling sex ratio of 70:30 female to male for this rookery will translate into an overall operational sex ratio (OSR) (i.e., ratio of total number of males vs females breeding each year) of close to 50:50 female to male. We followed three male turtles for between 10 and 12 months during which time they all traveled back to the breeding grounds. Flipper tagging revealed the proportion of females returning to nest after intervals of 1, 2, 3, and 4 years were 0.21, 0.38, 0.29, and 0.12, respectively (mean interval 2.3 years). A further nine male turtles were tracked for short periods to determine their departure date from the breeding grounds. These departure dates were combined with a photoidentification data set of 165 individuals identified on in‐water transect surveys at the start of the breeding season to develop a statistical model of the population dynamics. This model produced a maximum likelihood estimate that males visit the breeding site 2.6 times more often than females (95%CI 2.1, 3.1), which was consistent with the data from satellite tracking and flipper tagging. Increased frequency of male breeding will help ameliorate female‐biased hatchling sex ratios. Combined with the ability of males to fertilize the eggs of many females and for females to store sperm to fertilize many clutches, our results imply that effects of climate change on the viability of sea turtle populations are likely to be less acute than previously suspected.  相似文献   

12.
Phenotypic sex in sea turtles is determined by nest incubation temperatures, with warmer temperatures producing females and cooler temperatures producing males. The common finding of highly skewed female-biased hatchling sex ratios in sea turtle populations could have serious repercussions for the long-term survival of these species and prompted us to examine the thermal profile of a relatively pristine hawksbill nesting beach in Guadeloupe, French West Indies. Data loggers placed at nest depth revealed that temperatures in the forested areas were significantly cooler than temperatures in the more open, deforested areas. Using these temperatures as a predictor of sex ratio, we were able to assess the relative contributions of the different beach zones to the primary sex ratio: significantly more males were likely to be produced in the forested areas. Coastal forests are therefore important male-producing areas for the hawksbill sea turtle, and this has urgent conservation implications. On Guadeloupe, as on many Caribbean islands, deforestation rates are high and show few signs of slowing, as there is continual pressure to develop beachfront areas. The destruction of coastal forest could have serious consequences both in terms of local nesting behavior and of regional demography through the effects on population sex ratios. Human alterations to nesting habitat in other reptile taxa have been shown to modify the thermal properties of nest sites in ways that can disrupt their ecology by allowing parasite transmission, increasing vulnerability to climate change, or rendering existing habitat unsuitable.  相似文献   

13.
Protecting eggs from predators is common practice in sea turtle conservation, but routine protection of hatchlings is not. Of 42 loggerhead hatchlings observed emerging from 10 nests on undeveloped Onslow Beach, North Carolina, 24 % were preyed on by ghost crabs. In experimental trials, ghost crabs similarly threatened and captured neonate freshwater sliders, supporting their substitution as proxy for threatened and endangered sea turtle hatchlings in field experiments testing density dependence. Exploiting natural long-shore variation in ghost crab density, we show that a 2.6-fold higher ghost crab density resulted in 5 times more nocturnal threat encounters with sliders and 3.4 times more slider captures. Sliders released in simulated group emergences experienced lower per capita capture risk by ghost crabs than solitary sliders, implying predator dilution. Non-independence of egg and hatchling depredation motivates consideration of merging sea turtle egg and hatchling stages when modeling and managing food web interactions.  相似文献   

14.
Hatching asynchrony is widespread amongst animals, but no consensus has yet emerged as to why asynchronous hatching has evolved. It is generally thought to have adaptive benefits during the raising of dependent young. However, here, we considered an alternative view of hatching asynchrony in birds as a consequence of factors acting at the onset of incubation. We recorded parental nest attendance behaviour during laying using continuous records of nest temperature in herring gulls, Larus argentatus. We tested whether nest attendance during laying was related to individual factors (clutch size and diet) and whether it had consequences on fitness outcomes (hatching spread, incubation period, hatching success and chick survival). Low nest attendance was associated with small clutch size, and independent of clutch size, pairs on a more marine diet had lower nest attendance than pairs on a lower trophic level terrestrial diet, possibly due to higher foraging effort for marine food. Broods hatched more asynchronous where pairs had a lower nest attendance during laying or took longer to complete a clutch and where the last egg took longer to hatch. Low nest attendance was also related to shorter incubation periods, possibly representing a strategy of birds in poor condition to reduce the demand of incubation by reducing the length of incubation. We found that low nest attendance during laying and increasing hatching asynchrony had detrimental effects on hatching success for small eggs laid early in the laying sequence. Increasing hatching asynchrony also had a detrimental effect on the survival of the youngest sibling. In our study population, hatching asynchrony was influenced by a more complex set of factors than simply onset of incubation and appears to be constrained by circumstances at the onset of incubation rather than to be an adaptive strategy. Thus, factors acting both during offspring rearing and at the onset of incubation need to be considered for a better understanding of hatching asynchrony.  相似文献   

15.
Incubation temperature in ectothermic vertebrates affects incubation periods, and in some reptiles it affects sex ratios and behavior. I present evidence that incubation temperature affects emergence and post-hatching behavior of pine snakes (Pituophis melanoleucus) that could influence survival in the weeks before hibernation. Hatchlings incubated at low temperatures remained in the nest longer, had fewer alternate nest openings, and fewer underground tunnels to hide in than did hatchlings from warmer temperatures. These conditions could render hatchlings from low-temperature nests more vulnerable to predation because, if a nest is opened, they are not inside tunnels where they would be protected. Hatchlings from nests incubated at low temperatures took longer to find shade during a thermoregulation test, and were less likely to move about in search of other cover than were those from higher-incubation-temperature artificial nests. Similarly, hatchlings from nests with low incubation temperatures were less responsive to a predatory stimulus and had a longer latency to strike than other hatchlings. Taken together, hatchlings from nests with low incubation temperatures might be less able to avoid predators and find shade than those from nests incubated at higher temperatures, and thus could be expected to have lower survival in nature. Received: 21 July 1997 / Accepted after revision: 15 February 1998  相似文献   

16.
Sex ratios are a fundamental trait for species reproduction. In species with temperature-dependent sex determination (TSD), sex ratios are not necessarily even, which has important demographic consequences. We examined the sex ratio of juvenile pelagic stage loggerhead turtles Caretta caretta offshore Madeira Island, North Eastern Atlantic, using laparoscopy and histology. The overall sex ratio was 2:1 (F:M), significantly different from an even sex ratio. Although there was no apparent temporal variation, sex ratios among size classes were significantly different. The sex ratio of juveniles was compared with known sex ratios for the putative source rookery and found to be similar to the subadults’ sex ratio, but significantly less female-biased than the hatchlings sex ratio. This suggests overestimation of hatchlings sex ratios and/or, less likely, differential mortality of females during the first months of life. Alternatively, the Madeira Island aggregation may be recruiting males from other geographical sources such as the Mediterranean and the Cape Verde.  相似文献   

17.
Ex situ conservation tools, such as captive breeding for reintroduction, are considered a last resort to recover threatened or endangered species, but they may also help reduce anthropogenic threats where it is difficult or impossible to address them directly. Headstarting, or captive rearing of eggs or neonate animals for subsequent release into the wild, is controversial because it treats only a symptom of a larger conservation problem; however, it may provide a mechanism to address multiple threats, particularly near population centers. We conducted a population viability analysis of Australia's most widespread freshwater turtle, Chelodina longicollis, to determine the effect of adult roadkill (death by collision with motor vehicles), which is increasing, and reduced recruitment through nest predation from introduced European red foxes (Vulpes vulpes). We also modeled management scenarios to test the effectiveness of headstarting, fox management, and measures to reduce mortality on roads. Only scenarios with headstarting from source populations eliminated all risks of extinction and allowed population growth. Small increases in adult mortality (2%) had the greatest effect on population growth and extinction risk. Where threats simultaneously affected other life‐history stages (e.g., recruitment), eliminating harvest pressures on adult females alone did not eliminate the risk of population extinction. In our models, one source population could supply enough hatchlings annually to supplement 25 other similar‐sized populations such that extinction was avoided. Based on our results, we believe headstarting should be a primary tool for managing freshwater turtles for which threats affect multiple life‐history stages. We advocate the creation of source populations for managing freshwater turtles that are greatly threatened at multiple life‐history stages, such as depredation of eggs by invasive species and adult mortality via roadkill.  相似文献   

18.
Reproductive output of leatherback turtles (Dermochelys coriacea) is affected by the stochastic nature of emergence success. Average emergence success of nests at Playa Grande, Costa Rica was 0.38 ± 0.27. Incubation temperature affected development of leatherback turtle eggs and emergence of hatchlings from the nest. We found that high temperatures reduced hatching success and emergence rate and increased embryonic mortality both early and late during incubation at Playa Grande. There was a temporal effect on emergence success that resulted in more hatchlings being produced at the beginning of the season, because of higher emergence success, than toward the end. Likewise, production of hatchlings varied from year to year. The average annual reproductive output was 252 ± 141 hatchlings per female. The 2005–2006 nesting season had the highest emergence success and produced the greatest number of hatchlings per female compared to the 2004–2005 (+120%) and 2006–2007 (+41%) seasons. However, average clutch size (62 ± 10) and clutch frequency (9.45 ± 1.63), were not different among years. Turtles that had nested a high number of years exhibited greater clutch frequency and arrived earlier to nest than turtles that had nested in fewer numbers of years. Nesting when environmental conditions favor high developmental success and emergence rate may constitute an advantageous reproductive strategy.  相似文献   

19.
In numerous laboratory experiments involving the incubation of reptile eggs, both the maternal origin of eggs and the incubating environment (nest effect) have been demonstrated to influence hatchling phenotype. Although different hatchling phenotypes have been reported from natural nests, the separate effects of maternal origin and nest on hatchling phenotype in natural nests have not been demonstrated because in natural nests the two effects are confounded with each other. Here, we use a split clutch design to experimentally separate nest effects from maternal origin effects in field nests of green turtles (Chelonia mydas). We found both maternal origin and nest to influence hatchling morphology and locomotor performance in some but not all field nests. By using egg mass (maternal origin effect) and nest temperature (nest effect) in multiple regression analysis, we found maternal origin had a greater influence than nest temperature on the morphological attributes of hatchling mass and carapace size, but nest temperature had a greater influence than maternal origin on the performance attributes of self-righting time, self-righting propensity, swim thrust during the first 30 min of swimming, and power stroke rate during the first 30 min of swimming.  相似文献   

20.
We investigated the fledging probability of oystercatcher, Haematopus ostralegus, chicks as a function of hatching order, brood size, territory quality and food availability. Sibling dominance was related to the hatching order in both low- (’leapfrogs’) and high-quality (’residents’) territories. Differences in hatchling mass might have aided the establishment of a dominance hierarchy, since breeders produced small late eggs and hatchlings. These mass differences were most pronounced in leapfrogs, and in large broods in years with lower food availability (’poor’ years). Late hatchlings fledged less often and with lower body masses compared to early hatchlings in all situations. Leapfrogs produced smaller broods and hatched their broods more asynchronously in poor years than leapfrogs breeding in years with more available food (’good’ years) and residents breeding in both poor and good years. Large brood sizes resulted in lower survival of hatchlings in poor years. These results favour the ’brood reduction’ hypothesis. However, contrary to the expectations of this hypothesis, hatching order also affected fledging success in residents. Moreover, large brood size resulted in higher survival of hatchlings in good years, particularly in residents. Thus, although large broods experienced losses due to sibling competition in some years, they nevertheless consistently produced more fledglings per brood in all years, both as leapfrogs and residents. We believe this effect is due to parental quality correlating with initial brood size. Most leapfrogs, at best, fledged one chick successfully each year, losing chicks due to starvation. Nevertheless, leapfrog broods were reduced in size after hatching significantly less quickly than resident broods. These results suggest that breeders lay and hatch insurance eggs to compensate for unpredictable losses due to the high predation rates on both nests (ca 50%) and chicks (ca 90%), in accordance with the ’nest failure’ hypothesis. Received: 14 February 2000 / Revised: 27 September 2000 / Accepted: 10 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号