首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The European Commission (EC) has recognized a need for strengthening innovation of environmental technologies in order to increase competitiveness of European technologies on a global market and to achieve a more sustainable development in Europe. In the area of soil and groundwater remediation, innovative technologies are principally available and have proven applicability and performance on demonstration scales, but market uptake is disappointing. Consequently, initiatives have been launched in order to promote application of these technologies and to investigate on the harmonization of applications. The European Co‐ordination Action for Demonstration of Efficient Soil and Groundwater Remediation (EURODEMO), an EC‐funded project, is one strategic initiative for supporting these goals. This article summarizes results obtained so far regarding the investigation of the European situation and some undertaken and envisaged measures to achieve better market uptake. The results of this research project may serve as prerequisites for a European Environmental Technologies Verification (ETV) process. © 2006 Wiley Periodicals, Inc.  相似文献   

2.
Cleanup activities often focus on the initial and final concentration levels of contaminants. What happens in-between, during implementation of treatment technologies, has raised major concerns by several environmental groups. To address this issue, the U.S. Environmental Protection Agency (EPA) has undertaken the task of developing a guidance that would identify the potential for cross-media transfer during implementation of various soil treatment technologies and recommend best management practices (BMPs) to prevent or control these cross-media transfers. The soil treatment technologies have been grouped into seven major categories in this effort. This article provides some details of the seven soil treatment technology groups and the general BMPs recommended in the draft BMP guidance document. One case history of existing control practices is also presented in this article and compared with the recommended BMPs.  相似文献   

3.
The Superfund Innovative Technology Evaluation (SITE) program is a program mandated by Congress through the 1986 Superfund Amendments and Reauthorization Act (SARA). The original Superfund allowed no provisions for research and development of needed remediation technologies. Problems arose when the demand for involved, complex treatment could not be met by the traditional contain, haul, and dispose process that hazardous waste handlers had become familiar with. In response to the increasing complexity of hazardous waste site remediation, SARA called for an “Alternative or Innovative Treatment Technology Research and Demonstration Program.” As a result, EPA's Office of Solid Waste and Emergency Response and the Office of Research and Development established the SITE program. This article is a historical analysis of the unique cost savings of the SITE program.  相似文献   

4.
This paper focuses on the dynamics the formation of operational costs of waste management in Italy and the effect of economic measures. Currently incentives and penalties have been internalized by the system no differently from other cost items and revenues. This has greatly influenced the system directing it towards solutions that are often distant from the real environmental objectives. Based on an analysis of disaggregated costs of collection treatment and recovery, we provide the basic elements to compose a picture of economic management in various technical–organizational scenarios.In the light of the considerations contained in the paper it is proposed, e.g. for controlled landfills, that the ecotax, currently based on weight, could be replaced by one based on the volume consumption. Likewise, for tax reduction on disposal system, instead a pre-treatment might ask an environmental balance of the overall system.The article presents a reflection on the last hidden costs associated with the consumption of goods and packaging, and how to reduce waste production is the necessary path to be followed in ecological and economic perspectives.  相似文献   

5.
Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO2 quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.  相似文献   

6.
The determination of cleanup levels at a CERCLA or RCRA site is often the single most important decision made by risk managers. This decision can have a major impact on the costs and time required for remediation, as well as on the selection of remedial technologies. The object of this article is to provide a critical review of the methods used by regulatory agencies and the regulated community to calculate chemical-specific cleanup goals for inactive hazardous waste sites, focusing on those cleanup goals that are designed to protect human health from the effects of chemicals. In addition to this analysis of historical methods that have been used, this article discusses some innovative solutions to the problem of calculating cleanup levels and presents an analysis of controversial topics related to cleanup levels currently under debate by regulatory agencies, industry, environmentalists, and legislative bodies.  相似文献   

7.
The remediation of inactive hazardous waste sites frequently involves a protracted negotiation with the respective state or federal agency and the entity responsible for creating the site and paying the costs. At orphaned sites, decisions are made almost exclusively by agency staff. Most of remedial decisions are made with little input or participation by the interested public. The public usually receives information in a highly technical and difficult-to-understand format after decisions are made. This ineffective form of communication can lead to mistrust and delays or changes in the remediation process. Effective public participation requires multidirectional modes of communication that provide for active and full involvement by all interested parties. At the present time, most agencies pay minimal attention to the needs of the interested public, often leaving area residents suspicious and dissatisfied with the overall program. There is an opportunity to significantly improve the public participation component of the federal Super-fund program through reauthorization. Subtle changes in the program can result in a significant increase of the public's sense of participation and overall satisfaction.  相似文献   

8.
This article describe a unique federal project aimed at the commercialization of different technologies for the decontamination of dredged material. The project is organized so that commercialization is achieved in a seamless way, starting with validation at the bench- and pilot-scale levels, and ending with the actual construction of operational facilities. This is the first integrated sediment decontamination program in which a step-wise bench-scale validation process of innovative/emerging technologies will scale-up to a production-scale facility capable of processing up to 375,000 m3 of dredged material per year. The need to develop public-private partnerships for the facility construction is emphasized as a way of obtaining adequate finding for capital and operating costs during the startup time of the commercialization process. It is expected that the end result of the project work will be the creation of economically-viable, self-sustaining decontamination technology companies.  相似文献   

9.
10.
Prefabricated vertical drains (PVDs) have been used for decades for soil improvement. Recent research has shown that PVDs can also be used to remediate contaminated fine-grained soils. A research program was undertaken at The University of Texas at Austin to study the use of PVDs in soil flushing (pump and treat). This research program included both analytical and experimental studies. The focus of this paper is the experimental part of the research effort. The design and results of two experiments are presented. These results provided insight into the operation and design of PVD remediation systems and exposed areas that need additional research. The laboratory results support prior research that indicate that PVD remediation systems can be an effective means of remediating contaminated fine-grained soils. In addition, the importance of keeping the injection and extraction rates similar to minimize consolidation was highlighted. The measured heads did not indicate that a significant amount of drawdown occurred over the course of the experiment. More research needs to be done on maintaining a consistent extraction rate and additional post experiment concentration measurements would be required if determining the tracer mass balance is the focus of any future experiments.  相似文献   

11.
Almost everyone who has been involved in a site remediation project has seen schedules slip and costs escalate due to political pressure from the public or the press. While focusing on remediation technologies and containment techniques to control costs, many organizations have neglected a major cost driver—public opinion. This article examines community relations from the perspective of an organization trying to control costs during a site remediation project. It details the strong correlation between the cost of a site cleanup and the level of public dissatisfaction and provides an organization with specific strategies on how to use proven communications techniques to lower costs. Examination of several case studies is provided, including a study involving a site in which community representatives actively worked to reduce project costs. It is clear that any responsible cleanup must be protective of public health and the environment. But it is becoming increasingly apparent that wise allocation of available resources has a profound effect on the program's ability to ensure public and environmental safety. In many cases, it has been proven that some costly cleanups—for example, involving excavation—sometimes actually increase risk by creating an exposure pathway where none existed before. In turn, such cleanups waste resources that are needed elsewhere. The challenge in dealing with this complicated issue is to help stakeholders understand the true ramifications of the choices that are faced at each site. If these stakeholders feel uninformed, powerless, or excluded from the process, it is likely that they will be unable to enter a productive discussion. The community relations programs outlined in documents such as a Superfund guidance can be helpful in familiarizing the community with site-related issues and with gathering public input. These activities act as a baseline for the programs discussed in this article. However, existing programs are not focused on providing a strategic advantage in reaching cleanup solutions and balancing health and environmental considerations with economic considerations.  相似文献   

12.
Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don’t sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements.This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no ‘best’ plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation.The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.  相似文献   

13.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc.  相似文献   

14.
As the limitations of site remedial technologies become more apparent and greater experience in their field implementation and effectiveness is gained, increased emphasis is placed on development of a structured technology selection process. Ideally, this selection process should yield the most cost-effective technology, which will accomplish cleanup goals in the shortest time frame. Although laboratory treatability studies comprise an essential component of this process, very little has been written about the methodology of designing, executing, and assessing the value of their results. This article presents practical considerations for environmental professionals who use treatability results in technology selection or others who execute such studies.  相似文献   

15.
To stem rising remediation costs for soils contaminated with hazardous metals, increased emphasis is being placed on the development of in-situ and ex-situ treatment technologies. Often, a lack of basic information on the chemical and physical characteristics of the soil and contaminants hampers treatability studies used to design these technologies. This article proposes and demonstrates a characterization program to meet these information needs, employing standard analytical techniques coupled with advanced spectroscopy and microscopy techniques. To support treatments involving physical separation strategies, the program uses standard analytical techniques to characterize the soil and the association of contaminants with different soil fractions (e.g., size and density fractions). Where chemical treatments are required, spectroscopy and microscopy methods are employed to yield quantitative information on the oxidation state and speciation of the contaminant. Examples demonstrate the use of measured soil and contaminant characteristics in the screening of alternative treatment technologies and in the selection of soils for use in treatability studies. Also demonstrated is the use of these characterization tools in the design and optimization of treatment strategies and in support of risk assessment determinations.  相似文献   

16.
In 1994, the U.S. Department of Energy (DOE) initiated a contract reform program intended to strengthen oversight capabilities and encourage the creation of contract and incentive structures, which would effectively facilitate the treatment of onsite contamination and waste. The remedia‐tion and disposal of these legacy wastes is the core of the Department's environmental manage‐ment mission (Government Accountability Office [GAO], 2003). Despite a concerted effort toward achieving the goals of the reform, progress has been slow. Many projects continue to necessitate cost and time extensions above those originally agreed upon. Although the Department insti‐tuted an accelerated cleanup program in 2002, promising to shave some $50 billion and 35 years from its earlier cost and schedule projections, there have been delays in critical project areas that call into question the attainability of the proposed reductions (GAO, 2005). Numerous explana‐tions have been offered as to why achieving these goals has proven so difficult, many of which have concluded that flawed contracting practices are to blame. This article concludes that the root of the problem is much deeper and that the organizational criticisms aimed at DOE are as much a legacy as the waste itself. Although the focus of this article is on large former nuclear weapons sites, these types of contracting and organizational issues are often found at other gov‐ernment and private complex hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

17.
Travis Air Force Base, California, has accelerated the pace of remediation while reducing long‐term costs and cutting greenhouse gas production. This has been achieved through optimizing existing systems and processes, adopting greener cleanups best management practices, and testing and implementing innovative “green” technologies. By optimizing and replacing existing systems that used energy‐intensive infrastructure, and by promoting the use of innovative in situ technologies, the US Air Force (Air Force) led team comprised of the Air Force Civil Engineer Center, the US Army Corps of Engineers, the performance‐based contractor CH2M, and the regulatory agencies consisting of the US Environmental Protection Agency, the California Water Board, and the California Department of Toxic Substances Control, has reduced annual system operation and maintenance costs by over $200,000 per year, while reducing annual carbon dioxide production by approximately 930 tons per year. As a result of these actions, chlorinated solvent source areas have been reduced by over 99 percent in some cases, and the predicted cleanup time frame for multiple sites has been reduced by several decades. This article provides a case study for implementation of cost‐effective greener cleanup actions, and summarizes the approach taken by the Air Force led team to complete the greener cleanups self‐declaration process consistent with the ASTM International's E‐2893 Standard Guide for Greener Cleanups.  相似文献   

18.
This study focuses on an evaluation of the cost effectiveness of abatement options for controlling emissions in existing iron foundries in Egypt. It is expected that such a study will enable decision by identifying concrete measures for abating total solid emissions (TSP). The structure of iron foundries in the country have been surveyed and the variant types of furnaces, the TSP emission level without any abatement options and data of the annual turnover of these foundries have been obtained. Possible market based instruments (MBI) options that might encourage these firms to seek the most efficient control measures have also been examined. Different abatement options such as updating burner design, switching heavy fuel oil to kerosene or natural gas, installing cleaning systems and/or updating the process technology were tested in terms of emission level and the overall turnover. The effect of installing different cleaning systems such as wet scrubbers and filter bags on the running cost of abating TSP was also investigated. Results obtained reveal that crucible (CrF) and short rotary (SRF) furnaces are the most numerous types of plants in Egypt. The concentration of TSP emissions exceeds the standards as specified in Law. Poor quality scrap input adversely affects the operation of the furnace, and impairs product quality and causes excessive TSP emissions. TSP emissions per ton of cast iron produced are relatively low for induction furnaces (EIFs), (about 0.04 kg) and very high in the dirtier technologies, particularly CrF and SRF, (29.95 and 32.2 kg, respectively). Cost analysis shows that the cost of abating one ton of TSP emitted amounts to 3000–5000 L.E and this cost represents a high percentage of turnover to plants abating emissions. A program for technical assistance and training would help iron foundries solving difficulties in reducing TSP emissions and encourage them to implement and operate effective pollution control measures. The work suggests structural changes such as: updating equipment; design of furnaces and cleaning of dirty scrap before use. Unification of small foundries in larger plants may provide funding to successfully abate TSP emissions. Financial support or assistance for pollution abatement by firms have had no impact so far. This is because such help has little effect on operating costs. In this context, a proposal for relocating iron foundries in new industrial areas seems to be immaterial if plants move without implementing acceptable abating options.  相似文献   

19.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   

20.
Adaptive sampling and analysis programs (ASAPs) provide a cost-effective alternative to traditional sampling program designs. ASAPs are based on field analytical methods for rapid sample turnaround and field-based decision support for guiding the progress of the sampling program. One common objective of ASAPs is to delineate contamination present in soils, either to support feasibility studies or remedial action designs. An ASAP based on portable gas chromatograph/ mass spectrograph (GC/MS) technologies developed at Tufts University combined with decision support tools created at Argonne National Laboratory was used to delineate explosives contamination in soils at Joliet Army Ammunition Plant, Joliet, Illinois. Tufts' GC/MS technologies provided contaminant-specific identification and quantification with rapid sample turnaround and high sample throughput. Argonne's decision support tools estimated contamination extent, determined the uncertainty associated with those estimates, and indicated where sampling should continue to minimize uncertainty. In the case of Joliet, per sample analytical costs were reduced by 75 percent as compared to the cost of off-site laboratory analyses for explosives. The use of an ASAP resulted in a much more accurate identification and delineation of contaminated areas than a traditional sampling program would have with the same number of samples collected on a regular grid. While targeting explosives contamination in soils at Joliet, the ASAP technologies used in this demonstration have much broader application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号